ABCG2 is an efflux transporter conferring multidrug resistance (MDR) on cancer cells. However, the initial molecular events leading to its up-regulation in MDR tumor cells are poorly understood. Herein, we explored the impact of drug treatment on the methylation status of the ABCG2 promoter and consequent reactivation of ABCG2 gene expression in parental tumor cell lines and their MDR sublines. We demonstrate that ABCG2 promoter methylation is common in T-cell acute lymphoblastic leukemia (T-ALL) lines, also present in primary T-ALL lymphoblast specimens. Furthermore, drug selection with sulfasalazine and topotecan induced a complete demethylation of the ABCG2 promoter in the T-ALL and ovarian carcinoma model cell lines CCRF-CEM and IGROV1, respectively. This resulted in a dramatic induction of ABCG2 messenger RNA levels (235- and 743-fold, respectively) and consequent acquisition of an ABCG2-dependent MDR phenotype. Quantitative genomic polymerase chain reaction and ABCG2 promoter-luciferase reporter assay did not reveal ABCG2 gene amplification or differential transcriptional trans-activation, which could account for ABCG2 up-regulation in these MDR cells. Remarkably, mimicking cytotoxic bolus drug treatment through 12- to 24-hour pulse exposure of ABCG2-silenced leukemia cells, to clinically relevant concentrations of the chemotherapeutic agents daunorubicin and mitoxantrone, resulted in a marked transcriptional up-regulation of ABCG2. Our findings establish that antitumor drug-induced epigenetic reactivation of ABCG2 gene expression in cancer cells is an early molecular event leading to MDR. These findings have important implications for the emergence, clonal selection, and expansion of malignant cells with the MDR phenotype during chemotherapy.
Folic acid (FA) is a high affinity ligand (K(d) = 0.1-1 nM) of folate receptors (FRs) responsible for cellular uptake of folates via receptor-mediated endocytosis. FRs are frequently overexpressed in malignant epithelial cells including ovary, brain, kidney, breast, colon, and lung. FR has emerged as a target for the differential-delivery of anticancer chemotherapeutics with several FA-linked therapeutic agents currently undergoing clinical trials. Here we show that by tethering both FA and the anticancer drug methotrexate (MTX) to arabinogalactan (AG), a highly branched natural polysaccharide with unusual water solubility, a targeted biomacromolecular nanovehicle is formed, which can differentially deliver a cytotoxic cargo into FR-overexpressing cells. Moreover, by linking MTX via an endosomally cleavable peptide (GFLG), we demonstrate a target-activated release mechanism. This FA-AG-GFLG-MTX drug conjugate displayed 6.3-fold increased cytotoxic activity to FR-overexpressing cells compared to their FR-lacking counterparts. These findings establish a novel FA-tethered polymeric nanoconjugate for the targeted delivery of antitumor agents into cancer cells overexpressing FR.
Transcription factor EB (TFEB) is a master transcriptional regulator playing a key role in lysosomal biogenesis, autophagy and lysosomal exocytosis. TFEB activity is inhibited following its phosphorylation by mammalian target of rapamycin complex 1 (mTORC1) on the surface of the lysosome. Phosphorylated TFEB is bound by 14-3-3 proteins, resulting in its cytoplasmic retention in an inactive state. It was suggested that the calcium-dependent phosphatase calcineurin is responsible for dephosphorylation and subsequent activation of TFEB under conditions of lysosomal stress. We have recently demonstrated that TFEB is activated following exposure of cancer cells to lysosomotropic anticancer drugs, resulting in lysosome-mediated cancer drug resistance via increased lysosomal biogenesis, lysosomal drug sequestration, and drug extrusion through lysosomal exocytosis. Herein, we studied the molecular mechanism underlying lysosomotropic-drug-induced activation of TFEB. We demonstrate that accumulation of lysosomotropic drugs results in membrane fluidization of lysosome-like liposomes, which is strictly dependent on the acidity of the liposomal lumen. Lysosomal accumulation of lysosomotropic drugs and the consequent fluidization of the lysosomal membrane, facilitated the dissociation of mTOR from the lysosomal membrane and inhibited the kinase activity of mTORC1, which is necessary and sufficient for the rapid translocation of TFEB to the nucleus. We further show that while lysosomotropic drug sequestration induces Ca2+ release into the cytoplasm, facilitating calcineurin activation, chelation of cytosolic Ca2+, or direct inhibition of calcineurin activity, do not interfere with drug-induced nuclear translocation of TFEB. We thus suggest that lysosomotropic drug-induced activation of TFEB is mediated by mTORC1 inhibition due to lysosomal membrane fluidization and not by calcineurin activation. We further postulate that apart from calcineurin, other constitutively active phosphatase(s) partake in TFEB dephosphorylation and consequent activation. Moreover, a rapid export of TFEB from the nucleus to the cytosol occurs upon relief of mTORC1 inhibition, suggesting that dephosphorylated TFEB constantly travels between the nucleus and the cytosol, acting as a rapidly responding sensor of mTORC1 activity.
Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes because of their hydrophobic weak base nature. We hence developed a novel photoactivation-based pharmacological Trojan horse approach to target and eradicate MDR cancer cells based on photo-rupture of IA-loaded lysosomes and tumor cell lysis via formation of reactive oxygen species. Illumination of IA-loaded cells resulted in lysosomal photodestruction and restoration of parental cell drug sensitivity. Lysosomal photodestruction of MDR cells overexpressing the key MDR efflux transporters ABCG2, ABCB1 or ABCC1 resulted in 10- to 52-fold lower IC50 values of various IAs, thereby restoring parental cell sensitivity. Finally, in vivo application of this photodynamic therapy strategy after i.v. injection of IAs in human ovarian tumor xenografts in the chorioallantoic membrane model revealed selective destruction of tumors and their associated vasculature. These findings identify lysosomal sequestration of IAs as an Achilles heel of MDR cells that can be harnessed to eradicate MDR tumor cells via lysosomal photodestruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.