The sea is an important renewable energy resource for its extension and the power conveyed by waves, currents, tides, and thermal gradients. Amongst these physical phenomena, sea waves are the source with the highest energy density and may contribute to fulfilling the global increase of power demand. Despite the potential of sea waves, their harnessing is still a technological challenge. Oscillating water column systems operating with Wells turbines represent one of the most straightforward and reliable solutions for the optimal exploitation of this resource. An analytical model and computational fluid dynamics models were developed to evaluate the functioning of monoplane isolated Wells turbines. For the former modelling, a blade element momentum code relying on the actuator disc theory was applied, considering the rotor as a set of airfoils. For the latter modelling, a three-dimensional multi-block technique was implemented to create the computational domain with a fully mapped mesh composed of hexahedral elements. The employment of circumferential periodic boundary conditions allowed for the reduction of computational power and time. The models use RANS or u-RANS schemes with a multiple reference frame approach or the u-RANS formulation with a sliding mesh approach. The achieved results were compared with analytical and experimental literature data for validation. All the developed models showed good agreement. The analytical approach is suitable for a fast prediction of the turbine operation during the first design stages, while the CFD models are indicated for further analysis of the selected configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.