Cattle is a reservoir of potentially pathogenic E. coli, bacteria that can represent a significant threat to public health, hence it is crucial to monitor the prevalence of the genetic determinants of virulence and antimicrobial resistance among the E. coli population. The aim of this study was the analysis of the phylogenetic structure, distribution of virulence factors (VFs) and prevalence of antimicrobial resistance among E. coli isolated from two groups of healthy cattle: 50 cows housed in the conventional barn (147 isolates) and 42 cows living on the ecological pasture (118 isolates). The phylogenetic analysis, identification of VFs and antimicrobial resistance genes were based on either multiplex or simplex PCR. The antimicrobial susceptibilities of E. coli were examined using the broth microdilution method. Two statistical approaches were used to analyse the results obtained for two groups of cattle. The relations between the dependent (VFs profiles, antibiotics) and the independent variables were described using the two models. The mixed logit model was used to characterise the prevalence of the analysed factors in the sets of isolates. The univariate logistic regression model was used to characterise the prevalence of these factors in particular animals. Given each model, the odds ratio (OR) and the 95% confidence interval for the population were estimated. The phylogroup B1 was predominant among isolates from beef cattle, while the phylogroups A, B1 and D occurred with equal frequency among isolates from dairy cattle. The frequency of VFs-positive isolates was significantly higher among isolates from beef cattle. E. coli from dairy cattle revealed significantly higher resistance to antibiotics. Some of the tested resistance genes were present among isolates from dairy cattle. Our study showed that the habitat and diet may affect the genetic diversity of commensal E. coli in the cattle. The results suggest that the ecological pasture habitat is related to the increased spreading rate of the VFs, while the barn habitat is characterised by the higher levels of antimicrobial resistance among E. coli.
Thrombocytes in vertebrates other than mammals, inter alia in fish, are analogues of platelets in mammals. In Osteichthyes, these cells take part in haemostatic processes, including aggregation and release reactions in cases of blood vessel damage, and in the immune response development as well. This paper discusses the development of thrombocytes in Osteichthyes, taking into account the need to make changes to the concept of grouping progenitor cells as suggested in the literature. The following pages present the morphological and cytochemical properties of thrombocytes as well as their defence functions, and also point out differences between thrombocytes in fish and platelets in mammals. The paper further highlights the level of thrombocytes’ immune activity observed in fish and based on an increased proportion of these cells in response to antigenic stimulation, on morphological shifts towards forms characteristic of dendritic cells after antigenic stimulation and on the presence of surface structures and cytokines released through, inter alia, gene expression of TLR receptors, MHC class II protein-coding genes and pro-inflammatory cytokines. The study also points out the need to recognise thrombocytes in Osteichthyes as specialised immune cells conditioning non-specific immune mechanisms and playing an important role in affecting adaptive immune mechanisms.
ABSTRACT:The studies aimed at monitoring development of phagocytic and bactericidal activity in carps in the course of their ontogenetic development. The studies were performed using the techniques described by Mantur et al. (1986a, b), adapted to fish. Results were expressed in thrombocyte phagocytic index (Ipt), percentage of phagocyting thrombocytes (%tp), percentage of ingested bacteria (%bp) and in the index of intracellular killing by thrombocytes (Ibt). Number of thrombocytes was also examined using the technique of Dessi. Results of testing thrombocyte capacity to ingest the standard Staphylococcus aureus 209P strain showed that Ipt and %tp increased gradually in carps between the age of 3 and 17 months. In older carps, 19 to 29 months of age, as well as in spawners the growth in activity paralelled the ontogenetic development within Ipt values while %tp values remained at a similar level. Phagocytic activity of thrombocytes expressed in Ipt was reflected also by %bp values, which was particularly evident in fish aging 23 months to 5 years. In the case of Ibt, values of the index were not related in any way to stage of ontogeny or sex of the fish. Number of thrombocytes in carps aged 3 months to 5 years was increasing in parallel to their ontogenetic development.
Commensal Escherichia coli population is a dynamic structure which may be important in the pathogenesis of extraintestinal infections. The aim of this study was the comparison of genetic diversity of commensal E. coli isolates from two age group—adults and young children. E. coli strains were isolated on MacConkey agar and identified by biochemical tests. Determination of four major phylogenetic groups, identification of virulence genes and antimicrobial resistance determinants were performed by using multiplex or simplex PCR. Phenotypic analysis of resistance was based on disc-diffusion method. The prevalence of virulence genes was significantly higher among isolates from adults than from young children. Phylogroup B2 predominated among E. coli from adults, whereas phylogroup A was the most common in isolates from young children. The analyses of antimicrobial resistance revealed that resistance to at least one antimicrobial agent and multidrug-resistance were detected significantly more frequent in the isolates from adults than from young children. This study documented that the commensal E. coli isolates from adults showed greater genetic diversity than from young children and constitutes a substantial reservoir of the virulence genes typical for extraintestinal pathogenic E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.