The paper deals with the problems of the actual behaviour, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly joints of the truss main girders chords of perspective railway steel temporary bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations – so-called “tooth” and “splice plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behaviour, strain and failure mechanism and corresponding strength of the connection, and on its numerical modelling using FEM. This paper is focused only on the static loading tests results of the splice plate connections and their evaluation, which have already been finished. Simultaneously with the static tests, the fatigue loading tests are being realized, too, but they have not been finished so far, as well as the FEM numerical modelling.
This paper describes experiences with use of different types of experiments (i.e. loading tests) as well as with use of socalled “Design assisted by testing” method given in the standard “Eurocode 1”. Both these mentioned ways are useful in case of a determination and verification of important design parameters, material properties and load-carrying capacities (in case of different types of stresses, used materials or geometric configurations of designed constructions or their elements and details). In this area, during recent years, large number of miscellaneous loading tests have been performed at the authors’ workplace. Therefore, all presented information and all described experiment results in this article are directly based on solved experimental (and theoretical) research programs carried out at Institute of Metal and Timber Structures at the Faculty of Civil Engineering at Brno University of Technology in cooperation with research institutes and companies in the Czech Republic. Most of all research projects were focused on the load-carrying capacity determination as well as on the knowledge about an actual behaviour and failure mechanisms of steel and steel-concrete structural members and details (recently of members made of FRP or GFRP composite, too), usually in case of verification of either existing or newly designed building or bridge structures.
The paper summarizes the results and evaluation of tests of the resistance of glass-fibre-concrete components used for footbridge deck cover subjected to wind loading actions. The main aims of this research was not only to verify the objective load-carrying capacity and serviceability of covering panels, but also to verify the use of glass-fibre-concrete and its properties, if applied for non-typical product. The tests also show the usage of the unique and effective method of the vacuum loading. The research has been elaborated based on the requirements of DAKO Brno Ltd. Company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.