The Azure Kinect is the successor of Kinect v1 and Kinect v2. In this paper we perform brief data analysis and comparison of all Kinect versions with focus on precision (repeatability) and various aspects of noise of these three sensors. Then we thoroughly evaluate the new Azure Kinect; namely its warm-up time, precision (and sources of its variability), accuracy (thoroughly, using a robotic arm), reflectivity (using 18 different materials), and the multipath and flying pixel phenomenon. Furthermore, we validate its performance in both indoor and outdoor environments, including direct and indirect sun conditions. We conclude with a discussion on its improvements in the context of the evolution of the Kinect sensor. It was shown that it is crucial to choose well designed experiments to measure accuracy, since the RGB and depth camera are not aligned. Our measurements confirm the officially stated values, namely standard deviation ≤17 mm, and distance error <11 mm in up to 3.5 m distance from the sensor in all four supported modes. The device, however, has to be warmed up for at least 40–50 min to give stable results. Due to the time-of-flight technology, the Azure Kinect cannot be reliably used in direct sunlight. Therefore, it is convenient mostly for indoor applications.
The Azure Kinect, the successor of Kinect v1 and Kinect v2, is a depth sensor. In this paper we evaluate the skeleton tracking abilities of the new sensor, namely accuracy and precision (repeatability). Firstly, we state the technical features of all three sensors, since we want to put the new Azure Kinect in the context of its previous versions. Then, we present the experimental results of general accuracy and precision obtained by measuring a plate mounted to a robotic manipulator end effector which was moved along the depth axis of each sensor and compare them. In the second experiment, we mounted a human-sized figurine to the end effector and placed it in the same positions as the test plate. Positions were located 400 mm from each other. In each position, we measured relative accuracy and precision (repeatability) of the detected figurine body joints. We compared the results and concluded that the Azure Kinect surpasses its discontinued predecessors, both in accuracy and precision. It is a suitable sensor for human–robot interaction, body-motion analysis, and other gesture-based applications. Our analysis serves as a pilot study for future HMI (human–machine interaction) designs and applications using the new Kinect Azure and puts it in the context of its successful predecessors.
The concept of “Industry 4.0” relies heavily on the utilization of collaborative robotic applications. As a result, the need for an effective, natural, and ergonomic interface arises, as more workers will be required to work with robots. Designing and implementing natural forms of human–robot interaction (HRI) is key to ensuring efficient and productive collaboration between humans and robots. This paper presents a gestural framework for controlling a collaborative robotic manipulator using pointing gestures. The core principle lies in the ability of the user to send the robot’s end effector to the location towards, which he points to by his hand. The main idea is derived from the concept of so-called “linear HRI”. The framework utilizes a collaborative robotic arm UR5e and the state-of-the-art human body tracking sensor Leap Motion. The user is not required to wear any equipment. The paper describes the overview of the framework’s core method and provides the necessary mathematical background. An experimental evaluation of the method is provided, and the main influencing factors are identified. A unique robotic collaborative workspace called Complex Collaborative HRI Workplace (COCOHRIP) was designed around the gestural framework to evaluate the method and provide the basis for the future development of HRI applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.