Electronic absorption and emission spectra have been investigated for cyanodiacetylene, HC(5)N, an astrophysically relevant molecule. The analysis of gas-phase absorption was assisted with the parallel rare gas matrix isolation experiments and with density functional theory (DFT) predictions concerning the excited electronic states. Mid-UV systems B (1)Delta<--X (1)Sigma(+) (origin at 282.5 nm) and A (1)Sigma(-)<--X (1)Sigma(+) (306.8 nm) were observed. Vibronic assignments have been facilitated by the discovery of the visible phosphorescence a (3)Sigma(+)<--X (1)Sigma(+) in solid Ar, Kr, and Xe. Phosphorescence excitation spectra, as well as UV absorption measurements in rare gas matrices, revealed the enhancement of A<--X transitions. The vibronic structure of dispersed phosphorescence spectra supplied new data concerning the ground state bending fundamentals of matrix-isolated HC(5)N. The experimental singlet-triplet splitting, 2.92 eV in Ar, closely matches the value of 3.0 eV predicted by DFT.
HCN is a molecule of astrochemical interest. In this study, it was produced in cryogenic Ar and Kr matrices from UV-photolyzed diacetylene/cyanodiacetylene mixtures. Its strong phosphorescence was discovered and served for the identification of the compound. Vibrationally resolved phosphorescence excitation spectra gave insight into excited singlet electronic states. Two electronic systems were observed around 26 000-34 000 cm and 35 000-50 000 cm. Energies of the second excited singlet and the lowest triplet state were derived from analysis of these systems. Vibrational and electronic spectroscopic features were assigned with the assistance of density functional theory calculations. Some trends concerning the electronic spectroscopy of HCN family molecules are presented.
UV laser irradiations of cryogenic solid argon matrices doped with a mixture of acetylene and cyanodiacetylene (HC5N) resulted in the formation of a longer carbon-nitrogen chain, cyanotriacetylene (HC7N). The identification of this species was accomplished based on IR vibrational spectroscopy (including the study of isotopically labeled compounds), on electronic luminescence spectroscopy, and on theoretical predictions. Additionally, IR absorption bands recognized as due to HC7N were detected in photolysed Ar matrices doped with a cyanoacetylene/diacetylene mixture; this assignment was confirmed with the mass spectrometry of gases released upon the warm-up of the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.