Mechanical fracture properties of interfacial transition zone (ITZ) of fine-grained composite based on cement matrix with different types – basalt, granite, marble and amphibolite – of rock inclusion were studied. Specimens with the initial stress concentrator were tested in standard three-point bending configuration. Fracture surfaces were examined with light and electron microscopes. Local ITZ response was characterized by nanoindentation in the vicinity of rock inclusions. Local elasticity, hardness and viscous properties were assessed. It has been shown that the ITZ is mechanically weaker compared to the bulk matrix in the region of ca. 0–20 μm from the inclusion for all specimen’s types. It exhibits gradual increase of elastic modulus and hardness, which can be approximately expressed by a power law. On the other hand, the creep in ITZ was found to be higher compared to the bulk matrix. The results of nanoindentation measurements are in a good agreement with overall mechanical properties, fracture response and microstructure measurements done by scanning electron microscopy.
In this paper, the attention is paid to the investigation of the influence of high temperature acting on specimens made from specially designed cement-based composite. The experimental programme was carried out on six sets of beam specimens with the dimensions of 20 × 40 × 200 mm. The specimens were loaded to a pre-set temperature of 100, 200, 400, 600, 800 and 1000 °C and then the temperature was kept for 60 minutes. When the temperature loading had been done, the specimens were left to cool down to the ambient temperature. After that, the ultrasonic pulse method was used to determine the degree of damage of temperature loaded specimens. The measured data obtained by this non-destructive method are in high correlation with values of informative compressive strength of the composite obtained after the temperature loading of specimens.
This paper concerns the results of research into the influence of the composition of rock inclusions on the fracture response of cement-based composite specimens. Specially designed specimens of the nominal dimensions 40 × 40 × 160 mm with inclusions in the shape of prisms with nominal dimensions of 8 × 8 × 40 mm were provided with an initial central edge notch with a depth of 12 mm. These specimens, which were made of fine-grained cement-based composite with different types of rock inclusion – amphibolite, basalt, granite, and marble – were tested in the three-point bending configuration. Fracture surfaces were examined via scanning electron microscopy and local response in the vicinity of rock inclusions was characterized via the nanoindentation technique. The aim of this paper is to analyse the influence of the chemical/petrographic composition of rock inclusions on the effective mechanical fracture parameters of cement-based composites, as well as on the microstructural mechanical parameters of the interfacial transition zone. The results of this research indicate the significant dependence of the effective fracture parameters on the petrographic and related chemical composition of the rock inclusions.
In this paper, the attention is paid to investigation of the importance of the interfacial transition zone (ITZ) in selected fine-grained cement-based composites for the global fracture behaviour. This is a region of cement paste around the aggregate particles which specific features could have significant impact on the final behaviour of cement composites with a crack tip nearby this interface under applied tension. The aim of this work is to show the basic interface microstructure by scanning electron microscopy (SEM) done by MIRA3 TESCAN and to analyse the behaviour of such composite by numerical modelling. Numerical studies assume two different ITZ thicknesses taken from SEM analysis. A simplified cracked geometry (consisting of three phases -matrix, ITZ, and aggregate) is modelled by means of the finite element method with a crack terminating at the matrix-ITZ interface. ITZ's modulus of elasticity is taken from generalized self-consistent scheme. A few conclusions are discussed based on comparison of the average values of the opening stress ahead of the crack tip with their critical values. The analyses dealing with the effect of ITZ's properties on the stress distribution should contribute to better description of toughening mechanisms in silicate-based composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.