Thermodynamic solution theories allow the prediction of chemical potentials in solutions of known composition. In cryobiology, such models are a critical component of many mathematical models that are used to simulate the biophysical processes occurring in cells and tissues during cryopreservation. A number of solution theories, both thermodynamically ideal and non-ideal, have been proposed for use with cryobiological solutions. In this work, we have evaluated two non-ideal solution theories for predicting water chemical potential (i.e. osmolality) in multi-solute solutions relevant to cryobiology: the Elliott et al. form of the multi-solute osmotic virial equation, and the Kleinhans and Mazur freezing point summation model. These two solution theories require fitting to only single-solute data, although they can make predictions in multi-solute solutions. The predictions of these non-ideal solution theories were compared to predictions made using ideal dilute assumptions and to available literature multi-solute experimental osmometric data. A single, consistent set of literature single-solute solution data was used to fit for the required solute-specific coefficients for each of the non-ideal models. Our results indicate that the two non-ideal solution theories have similar overall performance, and both give more accurate predictions than ideal models. These results can be used to select between the non-ideal models for a specific multi-solute solution, and the updated coefficients provided in this work can be used to make the desired predictions.
The prediction of nonideal chemical potentials in aqueous solutions is important in fields such as cryobiology, where models of water and solute transport-that is, osmotic transport-are used to help develop cryopreservation protocols and where solutions contain many varied solutes and are generally highly concentrated and thus thermodynamically nonideal. In this work, we further the development of a nonideal multisolute solution theory that has found application across a broad range of aqueous systems. This theory is based on the osmotic virial equation and does not depend on multisolute data. Specifically, we derive herein a novel solute chemical potential equation that is thermodynamically consistent with the existing model, and we establish the validity of a grouped solute model for the intracellular space. With this updated solution theory, it is now possible to model cellular osmotic behavior in nonideal solutions containing multiple permeating solutes, such as those commonly encountered by cells during cryopreservation. In addition, because we show here that for the osmotic virial equation the grouped solute approach is mathematically equivalent to treating each solute separately, multisolute solutions in other applications with fixed solute mass ratios can now be treated rigorously with such a model, even when all of the solutes cannot be enumerated.
Recently, measurements of a considerable portion of the phase diagram for the quaternary system water-ethylene glycol-sucrose-NaCl were published (Han et al., 2010). In that article, the data were used to evaluate the accuracy of two non-ideal multi-solute solution theories: the Elliott et al. form of the multi-solute osmotic virial equation and the Kleinhans and Mazur freezing point summation model. Based on this evaluation, it was concluded that the freezing point summation model provides more accurate predictions for the water-ethylene glycol-sucrose-NaCl system than the multi-solute osmotic virial equation. However, this analysis suffered from a number of issues, notably including the use of inconsistent solute-specific coefficients for the multi-solute osmotic virial equation. Herein, we reanalyse the data using a recently-updated and consistent set of solute-specific coefficients (Zielinski et al., 2014). Our results indicate that the two models have very similar performance, and, in fact, the multi-solute osmotic virial equation can provide more accurate predictions than the freezing point summation model depending on the concentration units used.
In this study we determined the availability and accumulation of iodine in selected structures in hen's eggs: yolk, albumen, and eggshells. Iodine was administered as a yeast-derived biological complex mixed in standard fodder mix “DJ” to laying hens in their maximum egg yield period. The feeding period was sustained for 12 weeks, resulting in iodine enrichment in yolk and eggshells. These results suggest that iodine-enriched yeast can be added to fodder mix and premix (mineral–vitamin) given to monogastric animals such as poultry and pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.