A major limitation of contemporary fiduciary markers is that they are either very small (they try to represent a single point in the space) or they must be planar in order to be reasonably detectable. A deformable large-scale marker or marker field that would be efficiently detectable is the objective of this work.We propose a design of such a marker field -the Honeycomb Marker Field. It is composed of symmetric hexagons, whose triplets of modules meet at "Y-junctions". We present an efficient detector of these image features -the Y-junctions. Thanks to the specific appearance of these synthetic image features, the algorithm can be very efficient -it only visits a small fraction of the image pixels in order to detect the Y-junctions reliably. The experiments show that compared to a general feature point detector (FAST was tested), the specialized Y-junctions detector offers better detection reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.