BackgroundPALB2 protein was recently identified as a partner of BRCA1 and BRCA2 which determines their proper function in DNA repair.MethodsInitially, the entire coding sequence of the PALB2 gene with exon/intron boundaries was evaluated by the PCR-SSCP and direct sequencing methods on 70 ovarian carcinomas. Sequence variants of interest were further studied on enlarged groups of ovarian carcinomas (total 339 non-consecutive ovarian carcinomas), blood samples from 334 consecutive sporadic and 648 consecutive familial breast cancer patients, and 1310 healthy controls from central Poland.ResultsTen types of sequence variants were detected, and among them four novel polymorphisms: c.2996+58T>C in intron 9; c.505C>A (p.L169I), c.618T>G (p.L206L), both in exon 4; and c.2135C>T (A712V) in exon 5 of the PALB2 gene. Another two polymorphisms, c.212-58A>C and c.2014G>C (E672Q) were always detected together, both in cancer (7.5% of patients) and control samples (4.9% of controls, p = 0.2). A novel germline truncating mutation, c.509_510delGA (p.R170fs) was found in exon 4: in 2 of 339 (0.6%) unrelated ovarian cancer patients, in 4 of 648 (0.6%) unrelated familial breast cancer patients, and in 1 of 1310 controls (0.08%, p = 0.1, p = 0.044, respectively). One ovarian cancer patient with the PALB2 mutation had also a germline nonsense mutation of the BRCA2 gene.ConclusionsThe c.509_510delGA is a novel PALB2 mutation that increases the risk of familial breast cancer. Occurrence of the same PALB2 alteration in seven unrelated women suggests that c.509_510delGA (p.R170fs) is a recurrent mutation for Polish population.
Background:We analysed critically the potential usefulness of RNA- and DNA-based biomarkers in supporting conventional histological diagnostic tests for prostate carcinoma (PCa) detection.Methods:Microarray profiling of gene expression and DNA methylation was performed on 16 benign prostatic hyperplasia (BPH) and 32 cancerous and non-cancerous prostate samples extracted by radical prostatectomy. The predictive value of the selected biomarkers was validated by qPCR-based methods using tissue samples extracted from the 58 prostates and, separately, using 227 prostate core biopsies.Results:HOXC6, AMACR and PCA3 expression showed the best discrimination between PCa and BPH. All three genes were previously reported as the most promising mRNA-based markers for distinguishing cancerous lesions from benign prostate lesions; however, none were sufficiently sensitive and specific to meet the criteria for a PCa diagnostic biomarker. By contrast, DNA methylation levels of the APC, TACC2, RARB, DGKZ and HES5 promoter regions achieved high discriminating sensitivity and specificity, with area under the curve (AUCs) reaching 0.95−1.0. Only a small overlap was detected between the DNA methylation levels of PCa-positive and PCa-negative needle biopsies, with AUCs ranging between 0.854 and 0.899.Conclusions:DNA methylation-based biomarkers reflect the prostate malignancy and might be useful in supporting clinical decisions for suspected PCa following an initial negative prostate biopsy.
It has been recently reported that kinases that belong to the mitogen-activated protein kinase (MAPK) family are rapidly activated by cholecystokinin (CCK) in rat pancreas both in vitro and in vivo. It is known that reactive oxygen species (ROS) play an important role in the pathogenesis of acute pancreatitis induced by supraphysiologic stimulation with CCK analogue, cerulein. The aim of our study was to evaluate whether MAPKs are activated by ROS in pancreatic acini. The activity of MAPK, c-Jun amino-terminal kinase (JNK), and p38 MAPK was determined in isolated rat pancreatic acinar cells by means of Western blotting, with the use of specific antibody that recognizes active, dually phosphorylated kinases. Incubation of acini with ROS donors, hydrogen peroxide (H2O2) and/or menadione (MND), strongly activated all three kinases. Activation of these kinases by ROS, but not by CCK, was substantially inhibited by pretreatment of acini with antioxidant N-acetylo-L-cysteine (NAC). Whereas CCK-induced activation of MAPK or JNK was totally or partially blocked by protein kinase C (PKC) inhibitor GF-109203X, ROS-induced activation of MAPK, JNK, and p38 MAPK was PKC independent. In conclusion, ROS strongly activate MAPK, JNK, and p38 MAPK in pancreatic acinar cells. It may be of importance in acute pancreatitis, because ROS are involved in the pathogenesis of this disease.
Objective Pituitary corticotroph adenomas commonly cause Cushing’s disease (CD) but part of these tumours are hormonally inactive (silent corticotroph adenomas, SCA). USP8 mutations are well-known driver mutations in corticotrophinomas. Differences in transcriptomic profiles between functioning and silent tumours or tumours with different USP8 status have not been investigated. Design and methods Forty-eight patients (28 CD, 20 SCA) were screened for USP8 mutations with Sanger sequencing. Twenty-four patients were included in transcriptomic profiling with Ampliseq Transcriptome Human Gene Expression Core Panel. The entire patients group was included in qRT-PCR analysis of selected genes expression. Immunohistochemistry was used for visualization of selected protein. Results We found USP8 mutation in 15 patients with CD and 4 SCAs. USP8 mutations determine molecular profile of the tumours as showed by hierarchical clustering and identification of 1648 genes differentially expressed in USP8-mutated and USP8-wild-type tumours. Mutations affect many molecular pathways as observed in Gene Set Enrichment analysis. USP8-mutated adenomas showed higher level of POMC, CDC25A, MAPK4 but lower level of CCND2, CDK6, CDKN1B than USP8-wt tumours. Eighty-seven genes differentially expressed between CD-related adenomas and SCAs were found, including those involved in cell signalling (GLI2, DLC1, TBX2, RASSF6), cell adhesion (GJA1, CDH6), ion transport (KCNN4, KCNJ5) and GABA signalling (GABBR2, GABRD). Conclusion USP8 mutations occur in functioning and silent corticotrophinomas. They have pleiotropic effect, not limited to EGFR signalling, and affect expression levels of many genes involved in different pathways. Expression of GABA-related genes GABBR2, GNAL, GABARD and KCNJ5 correspond to functional status of the tumours.
The purpose of our study was to establish the frequency and distribution of the four most common BRCA1 mutations in Polish general population and in a series of breast cancer patients. Analysis of the population frequency of 5382insC (c.5266dupC), 300T >G (p.181T >G), 185delAG (c.68_69delAG) and 3819del5 (c.3700_3704del5) mutations of the BRCA1 gene were performed on a group of respectively 16,849, 13,462, 12,485 and 3923 anonymous samples collected at birth in seven Polish provinces. The patient group consisted of 1845 consecutive female breast cancer cases. The most frequent BRCA1 mutation in the general population was 5382insC found in 29 out of 16,849 samples (0.17%). 300T >G and 3819del5 mutations were found in respectively 11 of 13,462 (0.08%) and four of 3923 (0.1%) samples. The population prevalence for combined Polish founder 5382insC and 300T >G mutations was 0.25% (1/400). The frequencies of 5382insC and 300T >G carriers among consecutive breast cancer cases were, respectively, 1.9% (35/1845) and 1.2% (18/1486). Comparing these data with the population frequency, we calculated the relative risk of breast cancer for 5382insC mutation at OR = 17 and for 300T >G mutation at OR = 26. Our results, based on large population studies, show high frequencies of founder 5382insC and 300T >G BRCA1 mutations in Polish general population. Carriage of one of these mutations is connected with a very high relative risk of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.