The methane fermentation of organic waste is one way to minimize organic waste, which accounts for 77% of the global municipal waste stream. The use of biochar as an additive for methane fermentation has been shown to increase the production potential of biogas. Sulfur waste has a potential application to synergistic recycling in a form of composites with other materials including biochar. A composite product in the form of a mixture of biochar and molten sulfur has been proposed. In this experiment, additions of the sulfur–biochar composite (SBC) were tested to improve the fermentation process. The biochar was produced from apple chips under the temperature of 500 °C. The ground biochar and sulfur (<1 mm particle size) were mixed in the proportion of 40% biochar and 60% sulfur and heated to 140 °C for sulfur melting. After cooling, the solidified composite was ground. The SBC was added in the dose rate of 10% by dry mass of prepared artificial kitchen waste. Wet anaerobic digestion was carried out in the batch reactors under a temperature of 37 °C for 21 days. As an inoculum, the digestate from Bio-Wat Sp. z. o. o., Świdnica, Poland, was used. The results showed that released biogas reached 672 mL × gvs−1, and the yield was 4% higher than in the variant without the SBC. Kinetics study indicated that the biogas production constant rate reached 0.214 d−1 and was 4.4% higher than in the variant without the SBC.
Methane fermentation of organic waste is one way to minimize organic waste, which accounts for 77% of the global municipal waste stream. The use of biowaste treatment technologies helps to improve the energy independence of the regions. Improving the efficiency of the methane fermentation process by using additives from waste may be an attractive alternative to the original technology. The use of biochar as an additive for methane fermentation has been shown to increase the production potential of biogas. The reasons for the improvement in efficiency are complex among others, it is assumed that the specific surface area of biochar may increase the population of anaerobic organisms. Up to date, there are many researches on the effect of biochar additions on methane fermentation, but there is no research on the effect of sulfur-biochar composite. The composite product in the form of a mixture of biochar and molten sulfur is an interesting area of research. In this experiment additions of the sulfur-biochar composite were tested to improve the fermentation process. The composite consisted of 40% biochar and 60% of sulfur and was added to the process. As results the addition of 1% of the composite increased the biogas potential by 4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.