Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer genes, yet the functional consequences of mutations located in extended splice regions is difficult to predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering mutations in cancer. In our in-house series of 401 liver cancers, SpliceAI uncovers 1244 cryptic splice mutations, located outside essential splice sites, that validate at a high rate (66%) in matched RNA-seq data. We then extend the analysis to a large pan-cancer cohort of 17 714 tumors, revealing >100 000 cryptic splice mutations. Taking into account these mutations increases the power of driver gene discovery, revealing 126 new candidate driver genes. It also reveals new driver mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor genes. Mutational signature analysis suggests mutational processes that could give rise preferentially to splice mutations in each cancer type, with an enrichment of signatures related to clock-like processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better annotate the functional consequences of mutations in oncology.
Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer genes, yet the functional consequences of mutations located in extended splice regions is difficult to predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering mutations in cancer. In our in-house liver cancer series, SpliceAI uncovers many cryptic splice mutations, located outside essential splice sites, that validate at a high rate in matched RNA-seq data. We then extend the analysis to a large pan-cancer cohort of 18,115 tumors, revealing >100,000 cryptic splice mutations. Taking into account these mutations increases the power of driver gene discovery, revealing >100 new candidate driver genes. It also reveals new driver mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor genes. Mutational signature analysis reveals the mutational processes that give rise to splice mutations in each cancer type, with an enrichment of signatures related to clock-like processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better annotate the functional consequences of mutations in oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.