Emotion recognition from speech may play a crucial role in many applications related to human-computer interaction or understanding the affective state of users in certain tasks, where other modalities such as video or physiological parameters are unavailable. In general, a human's emotions may be recognized using several modalities such as analyzing facial expressions, speech, physiological parameters (e.g., electroencephalograms, electrocardiograms) etc. However, measuring of these modalities may be difficult, obtrusive or require expensive hardware. In that context, speech may be the best alternative modality in many practical applications. In this work we present an approach that uses a Convolutional Neural Network (CNN) functioning as a visual feature extractor and trained using raw speech information. In contrast to traditional machine learning approaches, CNNs are responsible for identifying the important features of the input thus, making the need of hand-crafted feature engineering optional in many tasks. In this paper no extra features are required other than the spectrogram representations and hand-crafted features were only extracted for validation purposes of our method. Moreover, it does not require any linguistic model and is not specific to any particular language. We compare the proposed approach using cross-language datasets and demonstrate that it is able to provide superior results vs. traditional ones that use hand-crafted features.
In this paper, we investigated various physiological indicators on their ability to identify distracted and drowsy driving. In particular, four physiological signals are being tested: blood volume pulse (BVP), respiration, skin conductance and skin temperature. Data were collected from 45 participants, under a simulated driving scenario, through different times of the day and during their engagement on a variety of physical and cognitive distractors. We explore several statistical features extracted from those signals and their efficiency to discriminate between the presence or not of each of the two conditions. To that end, we evaluate three traditional classifiers (Random Forests, KNN and SVM), which have been extensively applied by the related literature and we compare their performance against a deep CNN-LSTM network that learns spatio-temporal physiological representations. In addition, we explore the potential of learning multiple conditions in parallel using a single machine learning model, and we discuss how such a problem could be formulated and what are the benefits and disadvantages of the different approaches. Overall, our findings indicate that information related to the BVP data, especially features that describe patterns with respect to the inter-beat-intervals (IBI), are highly associates with both targeted conditions. In addition, features related to the respiratory behavior of the driver can be indicative of drowsiness, while being less associated with distractions. Moreover, spatio-temporal deep methods seem to have a clear advantage against traditional classifiers on detecting both driver conditions. Our experiments show, that even though learning both conditions jointly can not compete directly to individual, task-specific CNN-LSTM models, deep multitask learning approaches have a great potential towards that end as they offer the second best performance on both tasks against all other evaluated alternatives in terms of sensitivity, specificity and the area under the receiver operating characteristic curve (AUC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.