Ceria-based transition metal catalysts have recently received considerable attention both in heterogeneous catalysis and electro-catalysis fields, due to their unique physicochemical characteristics. Their catalytic performance is greatly affected by the surface local chemistry and oxygen vacancies. The present study aims at investigating the impact of Co/Ce ratio and pretreatment conditions on the surface and redox properties of cobalt-ceria binary oxides. Co-ceria mixed oxides with different Co content (0, 20, 30, 60, 100 wt.%) were prepared by impregnation method and characterized by means of N 2 adsorption at-196 °C, X-ray diffraction (XRD), H 2 temperature-programmed reduction (H 2-TPR) and X-ray photoelectron spectroscopy (XPS). The results shown the improved reducibility of Co/CeO 2 mixed oxides compared to single oxides, due to a synergistic interaction between cobalt and cerium. Oxidation pretreatment results in a preferential localization of cerium species on the outer surface. In contrast, a uniform distribution of cobalt and cerium species over the entire catalyst surface is obtained by the reduction process, which facilitates the formation of oxygen vacancies though Co 3+ /Co 2+ and Ce 3+ /Ce 4+ redox cycles. Fundamental insights toward tuning the surface chemistry of cobalt-ceria binary oxides are provided, paving the way for real-life industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.