Arsenic trioxide (As(2)O(3)) is established as one of the most effective drugs for treatment of patients with acute promyelocytic leukemia, as well as other types of malignant tumors. However, HL-60 cells are resistant to As(2)O(3), and little is known about the underlying resistance mechanism for As(2)O(3) and its biomethylation products, namely, monomethylarsonous acid (MMA(III)) on the treatment of tumors. In the present study, we investigated the molecular mechanisms underlying iAs(III) and its intermediate metabolite MMA(III)-induced anticancer effects in the HL-60 cells. Here, we show that the HL-60 cells exhibit resistance to inorganic iAs(III) (IC(50) = 10 μM), but are relatively sensitive to its intermediate MMA(III) (IC(50) = 3.5 μM). Moreover, we found that the multidrug resistance protein 1 (MRP1), but not MRP2, is expressed in HL-60 cells, which reduced the intracellular arsenic accumulation, and conferred resistance to inorganic iAs(III) and MMA(III). Pretreatment of HL-60 with MK571, an inhibitor of MRP1, significantly increased iAs(III) and MMA(III)-induced cytotoxicity and arsenic accumulations, suggesting that the expression of MRP1/4 may lead to HL-60 cells resistance to trivalent arsenic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.