We segregated coexisting gabbroic and granitic melts by centrifuging them at high pressures and temperatures and measured the trace element compositions of the melts by laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the effect of melt structure contributes about one order of magnitude to crystal/melt partition coefficients. Partitioning of alkali and alkaline earth elements strongly depends on field strength: Amphoteric and lone pair electron elements partition into the polymerized granitic melt; and rare earth, transition, and high field strength elements coordinated by nonbridging oxygens partition remarkably similar into the gabbroic melt. A regular solution model predicts these effects.
The purpose of this paper is to understand why manganese containing Roman glass could be purple or colourless in spite of having very similar chemical compositions. The strategy followed to tackle this question consists in the production of glass with the same chemical composition as Roman glass whereby various production parameters were controlled and systematically analysed. It is shown that redox and colour of glass is more likely to have been managed through internal control through the choice of raw materials and the addition of organic matter. The main difference between ancient and modern glass production relies on the lower melting temperature of Roman furnaces, so that sulphate would have played a less important role in the redox determination. 1 Secondly, a colour compensation occurs between the blue reduced iron and the purple oxidised manganese. This causes a general 'greying' of the glass where no wavelength is absorbed more than others, but the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.