In order to evaluate the impact of water deficit in field conditions, researchers or breeders must set up large experiment networks in very restrictive field environments. Experience shows that half of the field trials are not relevant because of climatic conditions that do not allow the stress scenario to be tested. The PhénoField
®
platform is the first field based infrastructure in the European Union to ensure protection against rainfall for a large number of plots, coupled with the non-invasive acquisition of crops’ phenotype. In this paper, we will highlight the PhénoField
®
production capability using data from 2017-wheat trial. The innovative approach of the PhénoField
®
platform consists in the use of automatic irrigating rainout shelters coupled with high throughput field phenotyping to complete conventional phenotyping and micrometeorological densified measurements. Firstly, to test various abiotic stresses, automatic mobile rainout shelters allow fine management of fertilization or irrigation by driving daily the intensity and period of the application of the desired limiting factor on the evaluated crop. This management is based on micro-meteorological measurements coupled with a simulation of a carbon, water and nitrogen crop budget. Furthermore, as high-throughput plant-phenotyping under controlled conditions is well advanced, comparable evaluation in field conditions is enabled through phenotyping gantries equipped with various optical sensors. This approach, giving access to either similar or innovative variables compared manual measurements, is moreover distinguished by its capacity for dynamic analysis. Thus, the interactions between genotypes and the environment can be deciphered and better detailed since this gives access not only to the environmental data but also to plant responses to limiting hydric and nitrogen conditions. Further data analyses provide access to the curve parameters of various indicator kinetics, all the more integrative and relevant of plant behavior under stressful conditions. All these specificities of the PhénoField
®
platform open the way to the improvement of various categories of crop models, the fine characterization of variety behavior throughout the growth cycle and the evaluation of particular sensors better suited to a specific research question.
Twenty-one UK winter wheat cultivars were grown over three seasons at sites with natural inoculum sources of Soil-borne cereal mosaic virus (SBCMV) and Wheat spindle streak mosaic virus (WSSMV) located in France, Italy and the UK. Plants were assessed visually for virus symptoms and leaf extracts were tested for the presence of each virus using enzyme-linked immunosorbent assays (ELISA).Cultivars showing little or no foliar symptoms and low levels of virus in leaf tissue were classified as resistant to each virus. All the trials were taken to harvest and agronomic data collected. At the most heavily infected sites, severe symptoms of SBCMV were observed in all UK cultivars except Aardvark, Charger, Claire, Cockpit, Hereward and Xi 19. The latter cultivars exhibited either light or no symptoms and little or no SBCMV infection in leaves. In fields with WSSMV, the virus failed to develop in Italy, but was detected in the leaves of all the susceptible control cultivars at a site in France. However, no UK cultivar tested positive for WSSMV. Multi-site analysis indicated that the presence of WSSMV did not increase the impact of SBCMV on the height, thousand-grain weight or yield of UK cultivars. The wheat cultivars on test gave a similar response to SBCMV across three European countries. Possible sources of SBCMV resistance are discussed.
Wheat spindle streak mosaic virus (WSSMV) is a major concern for cereal crops in Europe and North America. A strong increase in the occurrence of WSSMV has been observed in each French region where susceptible cultivars are cultivated. Most European bread wheat cultivars are resistant, but assessing the status of newly registered cultivars or breeding lines regarding WSSMV resistance is of importance. This paper describes a genome‐wide association study carried out on a panel of 163 cultivars and tested for their resistance to WSSMV. Two regions on chromosomes 5B and 7D showed minor effects on WSSMV resistance. More importantly, a large genomic region on chromosome 2D explained most of the resistance to WSSMV. More than 99% of the cultivars carrying the AA genotype at the most associated marker (Excalibur_c15426_661) were resistant to WSSMV, while 100% of the cultivars showing the GG genotype were susceptible. This large genomic region of 45.8 Mb was found distal to the centromere and showed very high linkage disequilibrium. It is hypothesized that this region may be an alien introgression originating from a wild related species. This region contains a total of 2605 predicted genes based on the Chinese Spring IWGSC RefSeq v. 1.0 including genes potentially involved in plant disease resistance. A kompetitive allele‐specific PCR (KASP) single‐nucleotide polymorphism (SNP) marker was designed in order to identify breeding lines or registered cultivars resistant to WSSMV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.