The worldwide increase of hybridization in different groups is thought to have become more important with the loss of isolating barriers and the introduction of invasive species. This phenomenon could result in the extinction of endemic species. This study aims at investigating the hybridization dynamics between the endemic and threatened Lesser Antillean iguana (Iguana delicatissima) and the invasive common green iguana (Iguana iguana) in the Lesser Antilles, as well as assessing the impact of interspecific hybridization on the decline of I. delicatissima. 59 I. delicatissima (5 localities), 47 I. iguana (12 localities) and 27 hybrids (5 localities), who were all identified based on morphological characters, have been genotyped at 15 microsatellites markers. We also sequenced hybrids using ND4 mitochondrial loci to further investigate mitochondrial introgression. The genetic clustering of species and hybrid genetic assignment were performed using a comparative approach, through the implementation of a Discriminant Analysis of Principal Component (DAPC) based on statistics, as well as genetic clustering approaches based on the genetic models of several populations (Structure, NewHybrids and HIest), in order to get full characterization of hybridization patterns and introgression dynamics across the islands. The iguanas identified as hybrids in the wild, thanks to morphological analysis, were all genetically F1, F2, or backcrosses. A high proportion of individuals were also the result of a longer-term admixture. The absence of reproductive barriers between species leads to hybridization when species are in contact. Yet morphological and behavioral differences between species could explain why males I. iguana may dominate I. delicatissima, thus resulting in short-term species displacement and extinction by hybridization and recurrent introgression from I. iguana toward I. delicatissima. As a consequence, I. delicatissima gets eliminated through introgression, as observed in recent population history over several islands. These results have profound implications for species management of the endangered I. delicatissima and practical conservation recommendations are being discussed in the light of these findings.
The Lesser Antilles, in the Eastern Caribbean, is inhabited by three Iguana species: the Lesser Antillean iguanaIguana delicatissima, which is endemic to the northernmost islands of the Lesser Antilles, the introduced common iguana from South America, Iguana iguana iguana, represented also by the two newly described endemic subspecies Iguana iguana sanctaluciae from Saint Lucia and Iguana iguana insularis from Saint Vincent and the Grenadines, and Grenada, and the introduced Iguana rhinolopha from Central America. Drawing on both morphological and genetic data, this paper describes the Iguana populations from Saba and Montserrat as a new species, Iguana melanoderma. This species is recognized on the basis of the following combination of characteristics: private microsatellite alleles, unique mitochondrial ND4 haplotypes, a distinctive black spot between the eye and tympanum, a dorsal carpet pattern on juveniles and young adults, a darkening of body coloration with aging (except for the anterior part of the snout), a black dewlap, pink on the jowl, the high number of large tubercular nape scales, fewer than ten medium sized–triangular dewlap spikes, high dorsal spikes, and lack of horns on the snout. This new melanistic taxon is threatened by unsustainable harvesting (including for the pet trade) and both competition and hybridization from escaped or released invasive alien iguanas (I. iguana iguana and I. rhinolopha) from South and Central America, respectively. The authors call for action to conserve Iguana melanoderma in Saba and Montserrat and for further research to investigate its relationship to other melanistic iguanas from the Virgin Islands and coastal islands of Venezuela.
The Lesser Antilles, in the Eastern Caribbean, were long considered to have only two species in the genus Iguana Laurenti 1768: the Lesser Antillean iguana Iguana delicatissima, which is endemic to parts of the Lesser Antilles, and the Common green iguana Iguana iguana, which also occurs throughout Central and South America. No subspecies are currently recognised. However, herpetologists and reptile collectors have pointed out strong physical differences between some of the island populations of Iguana iguana and those from the continent. Drawing on both morphological and genetic data, this paper describes two subspecies of the Common green iguana Iguana iguana from the southern Lesser Antilles, specifically the countries of Saint Lucia Iguana iguana sanctaluciae and Iguana iguana insularis from St Vincent & the Grenadines, and Grenada. The form on the island of Saint Vincent has not been identified. The new subspecies are described based on the following unique combination of characters: Presence of high median and medium to small lateral horns on the snout; Small subtympanic plate not exceeding 20% of the eardrum size; Two or three scales of decreasing size anterior to the subtympanic plate; Fewer than ten small to medium triangular gular spikes; Medium sized dewlap; Low number of small to medium dispersed nuchal tubercles; Dark brown iris, with the white of the eye visible; Oval, prominent nostril; Short and relatively flat head; High dorsal spines; No swelling of the jowls in reproductively active males. Iguana iguana sanctaluciae has in adults vertical black stripes on body and tail and a black dewlap whereas Iguana iguana insularis is pale grey or creamy white in adults. Both subspecies are globally threatened by unsustainable hunting (including the pet trade) and by invasive alien species, including hybridization from invasive iguanas from South and Central America (I. iguana iguana and I. rhinolopha, considered here as full species) that have become established in all three countries. The authors call for stronger measures to conserve the remaining purebred Iguana i. insularis and Iguana i. sanctaluciae ssp. nov. throughout their ranges and for further research to identify other cryptic species and subspecies of Iguana in the Lesser Antilles.
I present an up-to-date annotated list of the herpetofauna of Martinique, and try to explain the causes responsible for the eradication of species such as Leptodactylus fallax, Boa sp. and Leiocephalus herminieri. Mabuya mabouya and Liophis cursor have not been seen for decades and may have been extirpated. It cannot be established that the mongoose was responsible; Didelphis marsupialis, of recent introduction, may have played an important role. Introduced and invasive species are numerous in Martinique: Chaunus marinus, Scinax ruber, Eleutherodactylus johnstonei, Gymnophthalmus underwoodi, Iguana iguana, Gekko gecko, Hemidactylus mabouia, without considering escaped pets and the dubious case of Allobates chalcopis as an endemic species. I also present the restoration plan for Iguana delicatissima in the French West Indies and the conservation work for this species in Martinique; increase of nesting areas, translocation, creation of numerous protected areas, and control of I. iguana. Of a total of 13 endemic and indigenous species from Martinique, three are definitely and a further two are probably eradicated. Including Guadeloupe, the French West Indies have the highest loss of herpetological biodiversity among all the islands in the West Indies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.