Paulowina elongata is a fast-growing tree species is grown in different climates and types of soils. Environmental adaptability as well as high-yielding biomass make the P. elongata species an ideal candidate for biofuel production. High soil salinity is known to inhibit plant growth dramatically or leads to plant death. The purpose of this study was to characterize the salt-induced changes in the transcriptome of P. elongata. Transcriptome differences in response to salt stress were determined by RNA sequencing (RNA-seq) using next generation sequencing and bioinformatics analysis. A total of 645 genes were found to have significant altered expression in response to salt stress. Expression levels of a selective subset of these genes were chosen and confirmed using quantitative real-time PCR. To the best of our knowledge, this is the first report of saltinduced transcriptome analysis in P. elongata. The current study indicates that differential expression of a select group of genes of P. elongata and their possible roles in pathways and mechanisms related to salt tolerance. Functional characterization of these genes will assist in future investigations of salt tolerance in P. elongata, which could be used to enhance biofuel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.