Background:The envelope protein from multiple sclerosis (MS) associated retroviral element (MSRV), a member of the Human Endogenous Retroviral family ‘W’ (HERV-W), induces dysimmunity and inflammation.Objective:The objective of this study was to confirm and specify the association between HERV-W/MSRV envelope (Env) expression and MS.Methods:103 MS, 199 healthy controls (HC) and controls with other neurological diseases (28), chronic infections (30) or autoimmunity (30) were analysed with an immunoassay detecting Env in serum. Env RNA or DNA copy numbers in peripheral blood mononuclear cells (PBMC) were determined by a quantitative polymerase chain reaction (PCR). Env was detected by immunohistology in the brains of patients with MS with three specific monoclonals.Results:Env antigen was detected in a serum of 73% of patients with MS with similar prevalence in all clinical forms, and not in chronic infection, systemic lupus, most other neurological diseases and healthy donors (p<0.01). Cases with chronic inflammatory demyelinating polyneuropathy (5/8) and rare HC (4/103) were positive. RNA expression in PBMC and DNA copy numbers were significantly elevated in patients with MS versus HC (p<0.001). In patients with MS, DNA copy numbers were significantly increased in chronic progressive MS (secondary progressive MS vs relapsing–remitting MS (RRMS) p<0.001; primary progressive MS vs RRMS –<0.02). Env protein was evidenced in macrophages within MS brain lesions with particular concentrations around vascular elements.Conclusion:The association between MS disease and the MSRV-type HERV-W element now appears quite strong, as evidenced ex-vivo from serum and PBMC with post-mortem confirmation in brain lesions. Chronic progressive MS, RRMS and clinically isolated syndrome show different ELISA (Enzyme-Linked Immunosorbent Assay) and/or PCR profiles suggestive of an increase with disease evolution, and amplicon sequencing confirms the association with particular HERV-W elements.
Immune-mediated diseases of the CNS, such as multiple sclerosis and its animal model, experimental autoimmune encephalitis (EAE), are characterized by the activation of antigen-presenting cells and the infiltration of autoreactive lymphocytes within the CNS, leading to demyelination, axonal damage, and neurological deficits. Hepatocyte growth factor (HGF) is a pleiotropic factor known for both neuronal and oligodendrocytic protective properties. Here, we assess the effect of a selective overexpression of HGF by neurons in the CNS of C57BL/6 mice carrying an HGF transgene (HGF-Tg mice). EAE induced either by immunization with myelin oligodendrocyte glycoprotein peptide or by adoptive transfer of T cells was inhibited in HGF-Tg mice. Notably, the level of inflammatory cells infiltrating the CNS decreased, except for CD25 + Foxp3 + regulatory T (T reg ) cells, which increased. A strong T-helper cell type 2 cytokine bias was observed: IFN-γ and IL-12p70 decreased in the spinal cord of HGF-Tg mice, whereas IL-4 and IL-10 increased. Antigen-specific response assays showed that HGF is a potent immunomodulatory factor that inhibits dendritic cell (DC) function along with differentiation of IL-10-producing T reg cells, a decrease in IL-17-producing T cells, and down-regulation of surface markers of T-cell activation. These effects were reversed fully when DC were pretreated with anti-cMet (HGF receptor) antibodies. Our results suggest that, by combining both potentially neuroprotective and immunomodulatory effects, HGF is a promising candidate for the development of new treatments for immune-mediated demyelinating diseases associated with neurodegeneration such as multiple sclerosis.cMet (HGF receptor) | experimental autoimmune encephalitis | immune tolerance | multiple sclerosis | neuroprotection
Mechanisms of action as well as cellular targets of glatiramer acetate (GA) in multiple sclerosis (MS) are still not entirely understood. IL-1 is present in CNS-infiltrating macrophages and microglial cells and is an important mediator of inflammation in experimental autoimmune encephalitis (EAE), the MS animal model. A natural inhibitor of IL-1, the secreted form of IL-1 receptor antagonist (sIL-1Ra) improves EAE disease course. In this study we examined the effects of GA on the IL-1 system. In vivo, GA treatment enhanced sIL-1Ra blood levels in both EAE mice and patients with MS, whereas IL-1 levels remained undetectable. In vitro, GA per se induced the transcription and production of sIL-1Ra in isolated human monocytes. Furthermore, in T cell contactactivated monocytes, a mechanism relevant to chronic inflammation, GA strongly diminished the expression of IL-1 and enhanced that of sIL-1Ra. This contrasts with the effect of GA in monocytes activated upon acute inflammatory conditions. Indeed, in LPSactivated monocytes, IL-1 and sIL-1Ra production were increased in the presence of GA. These results demonstrate that, in chronic inflammatory conditions, GA enhances circulating sIL-1Ra levels and directly affects monocytes by triggering a bias toward a less inflammatory profile, increasing sIL-1Ra while diminishing IL-1 production. This study sheds light on a mechanism that is likely to participate in the therapeutic effects of GA in MS.experimental autoimmune encephalitis ͉ cellular contact ͉ inflammation ͉ autoimmune disease
Since the immunochemical identification of the bullous pemphigoid antigen 230 (BP230) as one of the major target autoantigens of bullous pemphigoid (BP) in 1981, our understanding of this protein has significantly increased. Cloning of its gene, development and characterization of animal models with engineered gene mutations or spontaneous mouse mutations have revealed an unexpected complexity of the gene encoding BP230. The latter, now called dystonin (DST), is composed of at least 100 exons and gives rise to three major isoforms, an epithelial, a neuronal and a muscular isoform, named BPAG1e (corresponding to the original BP230), BPAG1a and BPAG1b, respectively. The various BPAG1 isoforms play a key role in fundamental processes, such as cell adhesion, cytoskeleton organization, and cell migration. Genetic defects of BPAG1 isoforms are the culprits of epidermolysis bullosa and complex, devastating neurological diseases. In this review, we summarize recent advances of our knowledge about several BPAG1 isoforms, their role in various biological processes and in human diseases.
Background/Aims: To measure the Timed Up and Go (TUG), imagined TUG (iTUG), and the difference of time between these two tests (delta time) in 20 patients with relapsing-remitting multiple sclerosis (RRMS) and 20 healthy age-matched controls and to examine whether an association with cognitive functions, motor impairment, and behavioral changes can be determined. Methods: The mean ± SD of TUG, iTUG and delta time were used as outcomes. Spatiotemporal gait parameters were recorded by a 12-camera optoelectronic system during straight walking at usual self-selected speed. Cognitive functions were assessed by a standardized neuropsychological examination. Results: Patients performed the TUG slower than the controls (10.00 ± 1.70 s vs. 8.71 ± 1.04 s, p = 0.01, respectively). The TUG was correlated with gait parameters, cognitive functions, and behavior, whereas delta time was correlated only with cognitive functions. Conclusion: TUG represents an interesting test to reveal subtle deficits in RRMS patients with low disability and is related to motor, cognitive, and behavioral functioning. Combining with the TUG, delta time could easily give additional information on specific cognitive functions in the assessment of patients with RRMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.