This paper discusses the need for reliable and valid multi-scale and multi-physics prediction models to support the design of new as well as the assessment, maintenance, and repair of existing reinforced concrete structures. A multi-physics and multi-scale deterioration model for chloride-induced corrosion of reinforced concrete has been established. Ongoing work includes extension of the model to 3D as well as modelling of the impact of the steel-concrete interface characteristics and electrochemical potential on chloride thresholds. Identified challenges include, among others, the improved understanding and modelling of single-and multi-deterioration mechanisms, environmental exposure, and data for validation. We envision that next generation maintenance and management of reinforced concrete infrastructure will combine numerical simulations based on multi-scale and multi-physics principles and extensive in-situ monitoring, allowing continuous Bayesian updating of 4D simulations of functional performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.