In this paper, we propose to estimate the moisture of vineyard soils from digital photography using machine learning methods. Two nonlinear regression models are implemented: a multilayer perceptron (MLP) and a support vector regression (SVR). Pixels coded with RGB colour model extracted from soil digital images along with the associated known soil moisture levels are used to train both models in order to predict moisture content from newly acquired images. The study is conducted on samples of six soil types collected from Chateau Kefraya terroirs in Lebanon. Both methods succeeded in forecasting moisture giving high correlation values between the measured moisture and the predicted moisture when tested on unknown data. However, the method based on SVR outperformed the one based on MLP yielding Pearson correlation coefficient values ranging from 0.89 to 0.99. Moreover, it is a simple and noninvasive method that can be adopted easily to detect vineyards soil moisture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.