Objective: The aims of this in vitro study were to evaluate: (1) the influence of 5% NaOCl application on Er:YAGirradiated dentin; and (2) its effect on the quality of adaptation of the composite restoration margins. Background data: Previous research has shown that Er:YAG dentin irradiation produces a thermally affected tissue layer that results in lower bond strength than that of nonirradiated dentin. The removal of this thermally-affected layer may enhance the quality of dentin bonding Materials and methods: Forty-nine caries-free extracted human molars were transversely sectioned in order to totally expose the dentin. Four standardized cavities were created on the dentinal surface of each molar. First, two cavities were irradiated with Er:YAG laser (2.94 nm): 150 mJ, 10 Hz, variable square pulse (VSP) mode (100 lsec), beam diameter = 0.9 mm, speed of irradiation = 1 mm/sec, 20% air and 20% water. Then, one of irradiated cavities and one of nonirradiated cavities were treated for 30 sec with 5% NaOCl solution. Finally, they went through a standard bonding treatment for composite restoration, etching, bonding, and composite filling. We obtained four groups of cavities: (1) one control group of nonirradiated cavities not pretreated with NaOCl; (2) one group of nonirradiated cavities, pretreated with NaOCl; (3) one group of irradiated cavities, not pretreated with NaOCl; and (4) one group of irradiated cavities, pretreated with NaOCl. All samples were subjected to thermocycling. Every cavity was immersed into a 0.5% solution of methylene blue. The percentage of dye penetration (microleakage) in the composite-dentin interface was evaluated. Six molars were analyzed by scanning electron microscope. Results: Dye infiltration depth was significantly reduced in irradiated cavities treated with 5% NaOCl solution. Conclusions: The application of a 5% NaOCl solution on Er:YAG irradiated cavities can significantly improve the marginal quality of composite bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.