Inhaled chemotherapy for the treatment of lung tumors requires that drug delivery systems improve selectivity for cancer cells and tumor penetration and allow sufficient lung residence. To this end, we developed solid lipid nanoparticles (SLN) with modified surface properties. We successfully synthesized a new folate-grafted copolymer of polyethylene glycol (PEG) and chitosan, F-PEG-HTCC, with a PEG-graft ratio of 7% and a molecular weight range of 211-250 kDa. F-PEG-HTCC-coated, paclitaxel-loaded SLN were prepared with an encapsulation efficiency, mean diameter, and zeta potential of about 100%, 250 nm, and +32 mV, respectively. The coated SLN entered folate receptor (FR)-expressing HeLa and M109-HiFR cells in vitro and M109 tumors in vivo after pulmonary delivery. The coated SLN significantly decreased the in vitro half-maximum inhibitory concentrations of paclitaxel in M109-HiFR cells (60 vs 340 nM, respectively). We demonstrated that FR was involved in these improvements, especially in M109-HiFR cells. After pulmonary delivery in vivo, the coated SLN had a favorable pharmacokinetic profile, with pulmonary exposure to paclitaxel prolonged to up to 6 h and limited systemic distribution. Our preclinical findings therefore demonstrated the positive impact of the coated SLN on the delivery of paclitaxel by inhalation.
Oxidized low-density lipoproteins (LDLs) accumulate in the vascular wall and promote local inflammation, which contributes to the progression of the atheromatous plaque. The key role of myeloperoxidase (MPO) in this process is related to its ability to modify APO B-100 in the intima and at the surface of endothelial cells. A series of 3-(aminoalkyl)-5-fluoroindole analogues was designed and synthesized by exploiting the structure-based docking of 5-fluorotryptamine, a known MPO inhibitor. In vitro assays were used to study the effects of these compounds on the inhibition of MPO-mediated taurine chlorination and oxidation of LDLs. The kinetics of the interaction between the MPO redox intermediates, Compounds I and II, and these inhibitors was also investigated. The most potent molecules possessed a 4- or 5-carbon aminoalkyl side chain and no substituent on the amino group. The mode of binding of these analogues and the mechanism of inhibition is discussed with respect to the structure of MPO and its halogenation and peroxidase cycles.
Metal complexes have been the subject of numerous investigations in oncology but, despite the plethora of newly synthesized compounds, their precise mechanisms of action remain generally unknown or, for the best, incompletely determined. The continuous development of efficient and sensitive techniques in analytical chemistry and molecular biology gives scientists new tools to gather information on how metal complexes can be effective toward cancer. This review focuses on recent findings about the anticancer mechanism of action of metal complexes and how the ligands can be used to tune their pharmacological and physicochemical properties.
A series of 33 novel divanillates and trivanillates were synthesized and found to possess promising cyto-static rather than cytotoxic properties. Several compounds under study decreased by >50% the activity of Aurora A, B, and C, and WEE1 kinase activity at concentrations <10% of their IC50 growth inhibitory ones, accounting, at least partly, for their cytostatic effects in cancer cells and to a lesser extent in normal cells. Compounds 6b and 13c represent interesting starting points for the development of cytostatic agents to combat cancers, which are naturally resistant to pro-apoptotic stimuli, including metastatic malignancies.
Abstract:The importance of reactive drug metabolites in the pathogenesis of drug-induced toxicity has been investigated since the early 1950s, mainly to reveal the link between toxic metabolites and chemical carcinogenesis. This review mainly focuses on biologically active compounds, which generate reactive quinone methide (QM) intermediates either directly or after bioactivation. Several examples of anticancer drugs acting through the generation of QM electrophiles are given. The use of those drugs for chemotherapeutic purposes is also discussed. The key feature of those QM-generating drugs is their reactivity toward specific nucleophilic biological targets. Modulation of their reactivity represents a challenge for medicinal chemists because, depending on the reactivity of these QM intermediates, their interaction with critical proteins can alter the function of these key proteins and induce a wide variety of responses with functional consequences. Among the possible consequences, antiproliferative effects could be exploited for chemotherapeutic purposes. Information on how such QM-generating drugs can affect individual target proteins and their functional consequences are required to help the medicinal chemist in the design of more specific QM-generating molecules for chemotherapeutic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.