Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100’000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity.These guidelines aim to provide a trans-European consensus to guide practitioners, set standards of care and to help to raise awareness. To achieve these goals, the guidelines were developed using the SIGN methodology by having professionals on MMA/PA across twelve European countries and the U.S. gather all the existing evidence, score it according to the SIGN evidence level system and make a series of conclusive statements supported by an associated level of evidence. Although the degree of evidence rarely exceeds level C (evidence from non-analytical studies like case reports and series), the guideline should provide a firm and critical basis to guide practice on both acute and chronic presentations, and to address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Furthermore, these guidelines highlight gaps in knowledge that must be filled by future research. We consider that these guidelines will help to harmonize practice, set common standards and spread good practices, with a positive impact on the outcomes of MMA/PA patients.
Cystathionine beta-synthase (CBS) deficiency is a rare inherited disorder in the methionine catabolic pathway, in which the impaired synthesis of cystathionine leads to accumulation of homocysteine. Patients can present to many different specialists and diagnosis is often delayed. Severely affected patients usually present in childhood with ectopia lentis, learning difficulties and skeletal abnormalities. These patients generally require treatment with a low-methionine diet and/or betaine. In contrast, mildly affected patients are likely to present as adults with thromboembolism and to respond to treatment with pyridoxine. In this article, we present recommendations for the diagnosis and management of CBS deficiency, based on a systematic review of the literature. Unfortunately, the quality of the evidence is poor, as it often is for rare diseases. We strongly recommend measuring the plasma total homocysteine concentrations in any patient whose clinical features suggest the diagnosis. Our recommendations may help to standardise testing for pyridoxine responsiveness. Current evidence suggests that patients are unlikely to develop complications if the plasma total homocysteine concentration is maintained below 120 μmol/L. Nevertheless, we recommend keeping the concentration below 100 μmol/L because levels fluctuate and the complications associated with high levels are so serious.
The pentose phosphate pathway and the pyruvate shunt were identified as major pathways of glucose catabolism in a recombinant, riboflavin-producing Bacillus subtilis strain. Reactions connecting the tricarboxylic acid cycle and glycolysis, catalyzed by the malic enzyme and phosphoenolpyruvate carboxykinase, consume up to 23% of the metabolized glucose. These are examples of important fluxes that can be accessed explicitly using a novel analysis based on synergistic application of flux balancing and recently introduced techniques of fractional 13C-labeling and two-dimensional nuclear magnetic resonance spectroscopy. The overall flux distribution also suggests that B. subtilis metabolism has an unusually high capacity for the reoxidation of NADPH. Under the conditions investigated, riboflavin formation in B. subtilis is limited by the fluxes through the biosynthetic rather than the central carbon pathways, which suggests a focus for future metabolic engineering of this system.
The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13 C labeling experiments with [U-13 C 6 ]glucose in glucoseor ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to disruption of both pyruvate kinase isoenzymes in E. coli was a local flux rerouting via the combined reactions of phosphoenolpyruvate (PEP) carboxylase and malic enzyme. Responses in the pentose phosphate pathway and the tricarboxylic acid cycle were strongly dependent on the environmental conditions. In addition, high futile cycling activity via the gluconeogenic PEP carboxykinase was identified at a low dilution rate in glucose-limited chemostat culture of pyruvate kinase-deficient E. coli, with a turnover that is comparable to the specific glucose uptake rate. Furthermore, flux analysis in mutant cultures indicates that glucose uptake in E. coli is not catalyzed exclusively by the phosphotransferase system in glucose-limited cultures at a low dilution rate. Reliability of the flux estimates thus obtained was verified by statistical error analysis and by comparison to intracellular carbon flux ratios that were independently calculated from the same NMR data by metabolic flux ratio analysis.The central carbon pathways fulfill anabolic and catabolic functions by providing cofactors and building blocks for macromolecular synthesis as well as energy. While some singlegene knockout mutations in central metabolism preclude growth on glucose, a majority of such variations can potentially be compensated for either by isoenzymes (39) or by a rerouting of carbon fluxes through alternative pathways (7,15,20,42). Usually, the phenotypes of knockout mutants is characterized by quantitative physiological analysis, and conclusions on intracellular metabolism are then based on qualitative interpretation of these results. To reveal cause and effect relationships, however, it is important to gain deeper insight into the complex metabolic responses at the level of intracellular metabolite concentrations and fluxes. These intracellular carbon fluxes, or in vivo reaction rates, are per se nonmeasurable quantities that cannot usually be inferred directly from in vitro enzyme activities because not all in vivo effector concentrations are known. Hence, the intracellular reaction rates are commonly estimated by methods of metabolic flux analysis, which provide a holistic perspective on metabolism (52, 54).The most common approach is based on flux balancing analysis within a stoichiometric model of cellular metabolism (26,41, 50, 52). In this approach, uptake and secretion rates and biosynthetic requirements are balanced in a stoichiometric model, assuming quasi-steady-state material balances on the intermediates. In many cases, however, limited extracellular data and stoichiometric constraints lead to underdetermined systems, so that addition...
The present data show potentially harmful effects of low to moderate consumption of SSBs on markers of cardiovascular risk such as LDL particles, fasting glucose, and hs-CRP within just 3 wk in healthy young men, which is of particular significance for young consumers. This trial was registered at clinicaltrials.gov as NCT01021969.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.