BACKGROUND & AIMS Premalignant lesions and early stage tumors contain immunosuppressive microenvironments that create barriers for cancer vaccines. KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) mice, which express an activated form of Kras in pancreatic tissues, develop pancreatic intraepithelial neoplasms (PanIN) that progress to pancreatic ductal adeno-carcinoma (PDA). We used these mice to study immune suppression in PDA. METHODS We immunized KPC and KrasG12D/+;Pdx-1-Cre mice with attenuated intracellular Listeria monocytogenes (which induces CD4+ and CD8+ T-cell immunity) engineered to express KrasG12D (LM-Kras). The vaccine was given alone or in sequence with an anti-CD25 antibody (PC61) and cyclophosphamide, to deplete T-regulatory (Treg) cells. Survival times were measured; pancreatic and spleen tissues were collected and analyzed by histologic, flow cytometry, and immunohistochemical analyses. RESULTS Interferon γ-mediated, CD8+ T-cell responses were observed in KPC and KrasG12D/+;Pdx-1-Cre mice given LM-Kras, but not in unvaccinated mice. Administration of LM-Kras to KPC mice 4–6 weeks old (with early stage PanINs), depleted of Treg cells, significantly prolonged survival and reduced PanIN progression (median survival, 265 days), compared with unvaccinated mice (median survival, 150 days; P = .002), mice given only LM-Kras (median survival, 150 days; P = .050), and unvaccinated mice depleted of Treg cells (median (medium survival, 170 days; P = .048). In 8- to 12-week-old mice (with late-stage PanINs),¼LM-Kras, alone or in combination with Treg cell depletion, did not increase survival time or slow PanIN progression. The combination of LM-Kras and Treg cell depletion reduced numbers of Foxp3+CD4+ T cells in pancreatic lymph nodes, increased numbers of CD4+ T cells that secrete interleukin 17 and interferon g, and caused CD11b+Gr1+ cells in the pancreas to acquire an immunostimulatory phenotype. CONCLUSIONS Immunization of KPC mice with Listeria monocytogenes engineered to express KrasG12D, along with depletion of Treg cells, reduces progression of early stage, but not late-stage, PanINs. This approach increases infiltration of the lesion with inflammatory cells. It might be possible to design immuno-therapies against premalignant pancreatic lesions to slow or prevent progression to PDA.
Cell-mediated cytotoxicity plays an important role in the clearance of noncytopathic viruses from infected tissues. Perforin-dependent cytotoxic mechanisms have been noted to play an important role in the clearance of infections from multiple extrahepatic organs. In contrast, mice with defects in the Fas/Fas ligand (FasL)-mediated cytotoxicity pathway exhibit delayed clearance of adenovirus from the liver without apparent delay in the clearance of viral infections from extrahepatic organs. The present studies examined the role of cytotoxic effector mechanisms in intrahepatic immune responses to a replication-defective, recombinant β-galactosidase-encoding adenovirus (AdCMV-lacZ). Delayed clearance of AdCMV-lacZ from the livers of FasL-defective B6.gld mice, but not perforin-deficient B6.pfp−/− mice, was noted despite no significant differences in initial hepatic CD8+ T cell IFN-γ or TNF responses or in activation of intrahepatic cytotoxic lymphocytes cells capable of killing AdCMV-lacZ-infected fibroblast targets. In contrast, AdCMV-lacZ-infected hepatocyte targets were far more sensitive to killing by intrahepatic cytotoxic lymphocytes from B6.pfp−/− than from B6.gld mice, and residual levels of virus-specific killing of hepatocyte targets by FasL-defective B6.gld CTL were blocked by TNF inhibition. These results suggest that inherent resistance of hepatocytes to cytotoxicity mediated by perforin-dependent mechanisms leaves Fas/FasL-dependent, cell-mediated cytotoxicity as the major pathway for CTL-mediated killing of virally infected hepatocytes and accounts for the more prominent role of perforin-independent anti-viral mechanisms in immune responses in the liver.
Deficiency or inhibition of tumor necrosis factor (TNF) significantly prolongs hepatic expression of recombinant adenoviral vectors. To explore mechanisms responsible for this observation, the present studies examined the effects of TNF versus TNF receptor 1 (TNFR1) or TNFR2 deficiency on the course of antiviral-immune responses to a replication-deficient, beta-galactosidase-encoding recombinant adenovirus (AdCMV-lacZ). Clearance of AdCMV-lacZ was significantly delayed in TNF-deficient mice. Less pronounced but significant delays in AdCMV-lacZ clearance were observed in TNFR2-deficient but not TNFR1-deficient mice. Numbers of interferon-gamma expressing intrahepatic lymphocytes (IHL) were similar in AdCMV-lacZ-infected, TNF-deficient, TNFR1-deficient, TNFR2-deficient, and control mice. However, IHL isolated from AdCMV-lacZ-infected, TNF-deficient or AdCMV-lacZ-infected, TNFR2-deficient mice exhibited decreased levels of FasL expression and adenovirus-specific cytolytic T lymphocyte (CTL) activity. Similar defects in allo-specific killing of Fas-sensitive hepatocyte targets by TNF-deficient or TNFR2-deficient but not TNFR1-deficient CTL were also noted. No defects in generation of allo-specific cytotoxicity directed against perforin-sensitive target cells were noted in TNF-, TNFR1-, or TNFR2-deficient lymphocytes. These findings indicate that TNF/TNFR2 interactions facilitate generation of FasL-dependent CTL effector pathways that play an important role in in vivo antiviral-immune responses in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.