The human-and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region-involved in the cobalamin/vitamin B12 synthesis-and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle.
BackgroundTracking recent transmission is a vital part of controlling widespread pathogens such as Mycobacterium tuberculosis. Multiple methods with specific performance characteristics exist for detecting recent transmission chains, usually by clustering strains based on genotype similarities. With such a large variety of methods available, informed selection of an appropriate approach for determining transmissions within a given setting/time period is difficult.MethodsThis study combines whole genome sequence (WGS) data derived from 324 isolates collected 2005–2010 in Kinshasa, Democratic Republic of Congo (DRC), a high endemic setting, with phylodynamics to unveil the timing of transmission events posited by a variety of standard genotyping methods. Clustering data based on Spoligotyping, 24-loci MIRU-VNTR typing, WGS based SNP (Single Nucleotide Polymorphism) and core genome multi locus sequence typing (cgMLST) typing were evaluated.FindingsOur results suggest that clusters based on Spoligotyping could encompass transmission events that occurred almost 200 years prior to sampling while 24-loci-MIRU-VNTR often represented three decades of transmission. Instead, WGS based genotyping applying low SNP or cgMLST allele thresholds allows for determination of recent transmission events, e.g. in timespans of up to 10 years for a 5 SNP/allele cut-off.InterpretationWith the rapid uptake of WGS methods in surveillance and outbreak tracking, the findings obtained in this study can guide the selection of appropriate clustering methods for uncovering relevant transmission chains within a given time-period. For high resolution cluster analyses, WGS-SNP and cgMLST based analyses have similar clustering/timing characteristics even for data obtained from a high incidence setting.
Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole genome sequencing (WGS) typically requires culture. Here, we evaluated the Deeplex Myc-TB targeted deep sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum. With MTBC DNA tests, the limit of detection was 100–1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1–99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and specificity of 97.4%. Fifty-six of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol, and ethionamide, and low-level rifampicin- or isoniazid-resistance mutations, all notoriously prone to phenotypic testing variability. Only 2 of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and specificity of 98.5/97.2/95.3%. Most residual discordances involved gene deletions/indels and 3–12% heteroresistant calls undetected by WGS analysis, or natural pyrazinamide resistance of globally rare “M. canettii” strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free. Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.
Testing for susceptibility to pyrazinamide (PZA) and analysis of the pncA gene sequences of 423 Mycobacterium tuberculosis complex isolates have revealed a unique silent nucleotide substitution that enables the rapid identification of "M. canettii" (proposed name). Moreover, the lack of a defined mutation within the pncA gene strongly suggests that an alternative mechanism is responsible for PZA resistance. Our results indicate that DNA sequencing of the pncA gene has the potential to shorten the turnaround time and increase the accuracy of PZA susceptibility testing of the M. tuberculosis complex. The Mycobacterium tuberculosis complex (MTB complex) consists of the closely related organisms M. tuberculosis, M. africanum, M. bovis, M. bovis BCG, M. caprae, M. microti, M.pinnipedii, the dassie bacillus, and "M. canettii" (proposed name) (3,5,6,26). Although the members of the complex may differ in their epidemiologies, host spectra, geographic ranges, pathogenicities, and antituberculosis drug susceptibilities and although they display different phenotypic characteristics by conventional biochemical tests, they show high degrees of genetic homogeneity (10, 25).Conventional phenotypic methods for the identification of the members of the MTB complex are laborious and timeconsuming, and they require a large biomass (13). Thus, molecular methods (such as DNA sequencing of the oxyR, pncA, gyrB, or hsp65 gene; analysis of spacers between direct repeats in the direct repeat region; and deletion analysis of the regions of difference [RD]) provide a more rapid and accurate approach to the differentiation of the members of the MTB complex (8,9,16,23,24).The findings of a recent report that examined seven genes (katG, gyrB, gyrA, rpoB, hsp65, sodA, and the 16S rRNA gene) indicate that M. canettii represents the most ancient phyloge-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.