Ions from compounds of megadalton (MDa) molecular weight were produced in an electrospray ionization source from solutions of poly(ethylene oxide) (PEO) samples with average molecular weights ranging from 1 000 000 to 7 000 000 Da. Charge detection mass spectrometry (CDMS) has been used to determine the mass of the MDa PEOs. Simultaneous measurement of the charge and velocity of individual ions allows the mass determination of the ion, after calibration of the instrument with independent samples. In addition to the mass spectra, CDMS generates charge-versus-mass plots, which allow investigation of the charging of electrosprayed ions over a broad range of masses. The experimental charging capacity of MDa PEOs is compared with a simple model based on the affinity of alkali cations for oxygen sites and on the electrostatic potential energy of the charged polymer. The charging capacity of PEOs was also investigated as a function of the concentration of and the type of alkali ions.
This work presents the implementation of tandem mass spectrometry for experiments on single electrosprayed ions from compounds of megadalton (MDa) molecular weight, using two charge detection devices. The first mass spectrometry stage (first charge detection device) combined with an ion gate allows both mass-to-charge ratio and charge selections of the megadalton ion of interest. The second stage is based on an electrostatic ion trap and consists of an image charge detection tube mounted between two ion mirrors. Single MDa ions can be stored for several dozen milliseconds. During the trapping time, single ions can be irradiated by a continuous wavelength CO(2) laser. We observe stepwise changes in the charge of a single trapped ion owing to multiphoton activation. Illustration of infrared multiphoton dissociation tandem mass spectrometry are given for single megadalton ions of poly(ethylene oxide)s and DNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.