SummaryCytokinins are degraded by cytokinin oxidases (CKOs) which catalyse cleavage of the N 6 -(isopent-2-enyl)-side chain resulting in formation of adenine-type compounds. CKO activity has been recorded in many plants and is thought to play a key role in controlling cytokinin levels in plants. Several partially purified CKOs have been characterised but no genes have been isolated yet. CKO activity is known to be inhibited by phenylureas, cytokinin agonists. We used 1 -(2-azido-6-chloropyrid-4-yl)-3-(4-[ 3 H])phenylurea ([ 3 H]-azidoCPPU) to photolabel a glycosylated CKO from maize kernels. This enabled us to purify the enzyme.Peptide sequences were determined and the corresponding cDNA was cloned. The deduced amino acid sequence shares homology domains with FAD-dependent oxidases. An original assay based on transient expression of the enzyme in moss protoplasts allowed the functionality of the recombinant enzyme to be demonstrated.
SummaryRoot hairs are a major site for the uptake of water and nutrients into plants, and they form an increasingly important model system for the study of development in higher plants. We now report on the molecular genetic analysis of the srh1 mutant in Arabidopsis thaliana impaired in root hair tip growth. We show that srh1 is a new allele of cow1 (can of worms1) and we identified the COW1 gene using a positional cloning strategy. The N-terminus of the COW1 protein is 32% identical to an essential phosphatidylinositol transfer protein (PITP), the yeast Sec14 protein (sec14p) while the C-terminus is 34.5% identical to a late nodulin of Lotus japonicus, Nlj16. We show that expression of the COW1 lipid-binding domain complements the growth defect associated with Sec14p dysfunction in yeast. In addition, we show that GFP fused to the COW1 protein specifically accumulates at the site of root hair outgrowth. We conclude that the COW1 protein is a PITP, essential for proper root hair growth.
Formation of the riboside-5'-monophosphate is a general feature of the metabolism of cytokinins in plants. As part of a study of the biological significance of the nucleotide form of cytokinins, we analyzed a mutant of Arabidopsis thaliana deficient in adenine phosphoribosyltransferase (APRT) activity for its ability to metabolize N6-benzyladenine (BA). Formation of Nl-benzyladenosine-5'-monophosphate (BAMP) was assayed in vivo, by feeding tritiated BA to wild-type and mutant plantlets, and in crude plantlet extracts. Metabolites were separated by high performance liquid chromatography and quantitated by on-line liquid scintillation spectrometry. BA was rapidly absorbed by A. thaliana plantlets and pnmanly converted to BAMP and to BA 7-and 9-glucosides. BA was also rapidly absorbed by APRT-deficient plantlets, but its conversion to BAMP was strongly reduced. Formation of BAMP from N6-benzyladenosine was not affected in the mutant plantlets.In vitro conversion of BA to its nucleoside-5'-monophosphate was detected in crude extracts of wild-type plantlets, but not in extracts of APRT-deficient plantlets. Therefore, results of both assays indicate that APRT-deficient tissue does not convert BA to BAMP to a significant extent. Further, nondenaturing isoelectric focusing analysis of APRT activity in leaf extracts indicated that the enzyme activities which metabolize adenine and BA into their corresponding riboside-5'-monophosphate in extracts of wildtype plantlets have the same apparent isoelectric point. These activities were not detected in extracts prepared from APRTdeficient plantlets. Thus, these results demonstrate that APRT is the main enzyme which converts BA to its nucleotide form in young A. thaliana plants and that the ribophosphorylation of BA is not a prerequisite of its absorption by the plantlets. lism, but few of the enzyme activities effecting these steps in vivo have been identified. Furthermore, which modified form(s) constitutes the "active" cytokinin remains an open question. Elucidation of the enzymes involved in the synthesis and metabolism of cytokinins may provide valuable insight into the function of the various cytokinin metabolites, how their level in particular tissues is regulated and how these levels relate to physiology of plants.The interconversion of cytokinin bases, ribosides and nucleotides is a major feature of the metabolism of cytokinins (5,17,20,26), and it may be catalyzed by the enzyme system that metabolizes adenine. Several of these enzymes have been purified and shown to act on N-substituted substrates in vitro, albeit at significantly lower rates than those measured on the corresponding adenine substrates (3-6). Results of in vivo feeding experiments also support the notion that the purine metabolizing enzymes may be the main route by which cytokinins are interconverted (7).
The mechanisms of reception/transduction of cytokinins still remain largely unknown. We used 1‐(2‐azido‐6‐chloropyrid‐4‐yl)‐3‐(4‐[3H])phenylurea ([3H]azido‐CPPU), a new photoaffinity probe to search for cytokinin‐binding proteins. A soluble protein that binds phenylurea‐type cytokinins has been specifically photolabeled in Nicotiana plumbaginifolia (cv. Viviani line pbH1D) leaf extracts. The protein was purified to homogeneity by affinity chromatography. Its N‐terminal amino acid sequence, as well as four internal peptidic sequences are highly homologous with the theta class of the glutathione S‐transferase superfamily (GST, EC 2.5.1.18) including Hyoscyamus muticus and Arabidopsis GSTs identified as auxin‐binding proteins. The purified N. plumbaginifolia protein also possesses GST enzymatic activity. To test the possible involvement of this GST in the mechanism of action of cytokinin, we studied the binding of tritiated‐CPPU to the purified GST in the presence of various compounds, cytokinin agonists, cytokinin antagonists, or inactive molecules. Thidiazuron is a poor competitor, and neither zeatin nor the active optical isomer R‐MeBA is able to inhibit the binding of CPPU. There is no correlation between the cytokinin activity and the binding properties of the molecules tested. Our results confirmed that plant GSTs bind different compounds, especially plant hormones but probably have no specific role in the mode of action of cytokinins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.