In mammalian cardiac cells, a variety of transient or sustained K+ currents contribute to the repolarization of action potentials. There are two main components of the delayed-rectifier sustained K+ current, I(Kr) (rapid) and I(Ks), (slow). I(Kr) is the product of the gene HERG, which is altered in the long-QT syndrome, LQT2. A channel with properties similar to those of the I(Ks) channel is produced when the cardiac protein IsK is expressed in Xenopus oocytes. However, it is a small protein with a very unusual structure for a cation channel. The LQT1 gene is another gene associated with the LQT syndrome, a disorder that causes sudden death from ventricular arrhythmias. Here we report the cloning of the full-length mouse K(V)LQT1 complementary DNA and show that K(V)LQT1 associates with IsK to form the channel underlying the I(Ks) cardiac current, which is a target of class-III anti-arrhythmic drugs and is involved in the LQT1 syndrome.
Acid-sensing is associated with both nociception and taste transduction. Stimulation of sensory neurons by acid is of particular interest, because acidosis accompanies many painful inflammatory and ischaemic conditions. The pain caused by acids is thought to be mediated by H+-gated cation channels present in sensory neurons. We have now cloned a H+-gated channel (ASIC, for acid-sensing ionic channel) that belongs to the amiloride-sensitive Na+ channel/degenerin family of ion channels. Heterologous expression of ASIC induces an amiloride-sensitive cation (Na+ > Ca2+ > K+) channel which is transiently activated by rapid extracellular acidification. The biophysical and pharmacological properties of the ASIC channel closely match the H+-gated cation channel described in sensory neurons. ASIC is expressed in dorsal root ganglia and is also distributed widely throughout the brain. ASIC appears to be the simplest of ligand-gated channels.
contributed equally to this work Aplysia S-type K ⍣ channels of sensory neurons play a dominant role in presynaptic facilitation and behavioural sensitization. They are closed by serotonin via cAMP-dependent phosphorylation, whereas they are opened by arachidonic acid, volatile general anaesthetics and mechanical stimulation. We have identified a cloned mammalian two P domain K ⍣ channel sharing the properties of the S channel. In addition, the recombinant channel is opened by lipid bilayer amphipathic crenators, while it is closed by cup-formers. The cytoplasmic C-terminus contains a charged region critical for chemical and mechanical activation, as well as a phosphorylation site required for cAMP inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.