The quality of plastic parts produced through injection molding depends on many factors. Especially during the filling stage, defects such as weld lines, burrs, or insufficient filling can occur. Numerical methods need to be employed to improve product quality by means of predicting and simulating the injection molding process. In the current work, a highly viscous incompressible non-isothermal two-phase flow is simulated, which takes place during the cavity filling. The injected melt exhibits a shear-thinning behavior, which is described by the Carreau-WLF model. Besides that, a novel discretization method is used in the context of 4D simplex space-time grids [2]. This method allows for local temporal refinement in the vicinity of, e.g., the evolving front of the melt [10]. Utilizing such an adaptive refinement can lead to locally improved numerical accuracy while maintaining the highest possible computational efficiency in the remaining of the domain. For demonstration purposes, a set of 2D and 3D benchmark cases, that involve the filling of various cavities with a distributor, are presented.
The Dirichlet-Neumann scheme is the most common partitioned algorithm for fluid-structure interaction (FSI) and offers high flexibility concerning the solvers employed for the two subproblems. Nevertheless, it is not without shortcomings: to begin with, the inherent added-mass effect often destabilizes the numerical solution severely. Moreover, the Dirichlet-Neumann scheme cannot be applied to FSI problems in which an incompressible fluid is fully enclosed by Dirichlet boundaries, as it is incapable of satisfying the volume constraint.In the last decade, interface quasi-Newton methods have proven to control the added-mass effect and substantially speed up convergence by adding a Newton-like update step to the Dirichlet-Neumann coupling. They are, however, without effect on the incompressibility dilemma. As an alternative, the Robin-Neumann scheme generalizes the fluid's boundary condition to a Robin condition by including the Cauchy stresses. While this modification in fact successfully tackles both drawbacks of the Dirichlet-Neumann approach, the price to be paid is a strong dependency on the Robin weighting parameter, with very limited a priori knowledge about good choices. This work proposes a strategy to merge these two ideas and benefit from their combined strengths. The resulting quasi-Newton-accelerated Robin-Neumann scheme is compared to both Robinand Dirichlet-Neumann variants. The numerical tests demonstrate that it does not only provide faster convergence, but also massively reduces the influence of the Robin parameter, mitigating the main drawback of the Robin-Neumann algorithm.
K E Y W O R D Sinterface quasi-newton methods, partitioned fluid-structure interaction, Robin-Neumann scheme
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.