Purpose Functional internal rotation (IR) is a combination of extension and IR. It is clinically often limited after reverse total shoulder arthroplasty (RTSA) either due to loss of extension or IR in extension. It was the purpose of this study to determine the ideal in-vitro combination of glenoid and humeral components to achieve impingement-free functional IR. Methods RTSA components were virtually implanted into a normal scapula (previously established with a statistical shape model) and into a corresponding humerus using a computer planning program (CASPA). Baseline glenoid configuration consisted of a 28 mm baseplate placed flush with the posteroinferior glenoid rim, a baseplate inclination angle of 96° (relative to the supraspinatus fossa) and a 36 mm standard glenosphere. Baseline humeral configuration consisted of a 12 mm humeral stem, a metaphysis with a neck shaft angle (NSA) of 155° (+ 6 mm medial offset), anatomic torsion of -20° and a symmetric PE inlay (36mmx0mm). Additional configurations with different humeral torsion (-20°, + 10°), NSA (135°, 145°, 155°), baseplate position, diameter, lateralization and inclination were tested. Glenohumeral extension of 5, 10, 20, and 40° was performed first, followed by IR of 20, 40, and 60° with the arm in extension of 40°—the value previously identified as necessary for satisfactory clinical functional IR. The different component combinations were taken through simulated ROM and the impingement volume (mm3) was recorded. Furthermore, the occurrence of impingement was read out in 5° motion increments. Results In all cases where impingement occurred, it occurred between the PE inlay and the posterior glenoid rim. Only in 11 of 36 combinations full functional IR was possible without impingement. Anterosuperior baseplate positioning showed the highest impingement volume with every combination of NSA and torsion. A posteroinferiorly positioned 26 mm baseplate resulting in an additional 2 mm of inferior overhang as well as 6 mm baseplate lateralization offered the best impingement-free functional IR (5/6 combinations without impingement). Low impingement potential resulted from a combination of NSA 135° and + 10° torsion (4/6 combinations without impingement), followed by NSA 135° and -20° torsion (3/6 combinations without impingement) regardless of glenoid setup. Conclusion The largest impingement-free functional IRs resulted from combining a posteroinferior baseplate position, a greater inferior glenosphere overhang, 90° of baseplate inclination angle, 6 mm glenosphere lateralization with respect to baseline setup, a lower NSA and antetorsion of the humeral component. Surgeons can employ and combine these implant configurations to achieve and improve functional IR when planning and performing RTSA. Level of evidence Basic Science Study, Biomechanics.
Purpose Intraoperative hinge fractures in distal femur osteotomies represent a risk factor for loss of alignment and non-union. Using finite element analysis, the goal of this study was to investigate the influence of different hinge widths and osteotomy corrections on hinge fractures in medial closed-wedge and lateral open-wedge distal femur osteotomies. Methods The hinge was located at the proximal margin of adductor tubercle for biplanar lateral open-wedge and at the upper border of the lateral femoral condyle for biplanar medial closed-wedge distal femur osteotomies, corresponding to optimal hinge positions described in literature. Different hinge widths (5, 7.5, 10 mm) were created and the osteotomy correction was opened/closed by 5, 7.5 and 10 mm. Tensile and compressive strain of the hinge was determined in a finite element analysis and compared to the ultimate strain of cortical bone to assess the hinge fracture risk. Results Doubling the correction from 5 to 10 mm increased mean tensile and compressive strain by 50% for lateral open-wedge and 48% for medial closed-wedge osteotomies. A hinge width of 10 mm versus 5 mm showed increased strain in the hinge region of 61% for lateral open-wedge and 32% for medial closed-wedge osteotomies. Medial closed-wedge recorded a higher fracture risk compared to lateral open-wedge osteotomies due to a larger hinge cross-section area (60–67%) for all tested configurations. In case of a 5 mm hinge, medial closed-wedge recorded 71% higher strain in the hinge region compared to lateral open-wedge osteotomies. Conclusion Due to morphological features of the medial femoral condyle, finite element analysis suggests that lateral-open wedge osteotomies are the preferable option if larger corrections are intended, as a thicker hinge can remain without an increased hinge fracture risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.