It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).
Direct determination of the chemical form of trace metals in soils still remains a challenge for instrumental analytical techniques. This paper examines the potential of EXAFS spectroscopy to speciate and quantify the form of trace metals in the solid fraction of soil materials using lead as a case study. Three soils contaminated by different sorts of industrial activities, including the synthesis of lead organometallics for gasoline antiknocks, Pb-Zn smelting, and recycling of lead acid battery, were investigated. In soil contaminated by alkyl-tetravalent lead compounds, lead was found to be divalent and complexed to salicylate and catechol-type functional groups of humic substances. Lead sulfate and silica-bound lead are the predominant forms in the vicinity of the battery reclamation area. Near the smelter, lead was found to be divalent and coordinated to O,OH ligands. It is present in several chemical forms, which prevented them from being identified individually. The multiplicity of lead species in soils contaminated by smelting activities is thought to be due to long-term atmospheric emissions and to the variety of lead-containing phases simultaneously, and successively, emitted in the atmosphere. EXAFS can be applied to a wide variety of matrices including sediments, solid and liquid wastes, and fly ash particles.
Purpose Many agricultural and brownfield soils are polluted and more have become marginalised due to the introduction of new, risk-based legislation. The European Environment Agency estimates that there are at least 250,000 polluted sites in the member states that require urgent remedial action. There is also significant volumes of wastewaters and dredged polluted sediments. Phytotechnologies potentially offer a cost-effective in situ alternative to conventional technologies for remediation of low to mediumcontaminated matrices, e.g. soils, sediments, tailings, solid wastes and waters. For further development, social and commercial acceptance, there is a clear requirement for upto-date information on successes and failures of these technologies based on evidence from the field. This review reports the outcomes from several integrated experimental attempts to address this at both field and market level in the 29 countries participating in COST Action 859. Results and discussion This review offers insight into the deployment of promising and emergent in situ phytotechnologies, for sustainable remediation and management of contaminated soils and water, that integrative research findings produced between 2004 and 2009 by members of COST Action 859. Many phytotechnologies are at the demonstration level, but relatively few have been applied in practice on large sites. They are not capable of solving all problems. Those options that may prove successful at market level are (a) phytoextraction of metals, As and Se from marginally contaminated agricultural soils, (b) phytoexclusion and phytostabilisation of metal-and AsResponsible editor: Stefan Norra M. Mench (*) UMR BIOGECO INRA 1202, Ecologie des Communautés,contaminated soils, (c) rhizodegradation of organic pollutants and (d) rhizofiltration/rhizodegradation and phytodegradation of organics in constructed wetlands. Each incidence of pollution in an environmental compartment is different and successful sustainable management requires the careful integration of all relevant factors, within the limits set by policy, social acceptance and available finances. Many plant stress factors that are not evident in short-term laboratory experiments can limit the effective deployment of phytotechnologies at field level. The current lack of knowledge on physicochemical and biological mechanisms that underpin phytoremediation, the transfer of contaminants to bioavailable fractions within the matrices, the long-term sustainability and decision support mechanisms are highlighted to identify future R&D priorities that will enable potential end-users to identify particular technologies to meet both statutory and financial requirements. Conclusions Multidisciplinary research teams and a meaningful partnership between stakeholders are primary requirements that determine long-term ecological, ecotoxicological, social and financial sustainability of phytotechnologies and to demonstrate their efficiency for the solution of large-scale pollution problems. The gap between research and develop...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.