In 2007, a consortium of European experts on tacrolimus (TAC) met to discuss the most recent advances in the drug/dose optimization of TAC taking into account specific clinical situations and the analytical methods currently available and drew some recommendations and guidelines to help clinicians with the practical use of the drug. Pharmacokinetic, pharmacodynamic, and more recently pharmacogenetic approaches aid physicians to individualize long-term therapies as TAC demonstrates a high degree of both between- and within-individual variability, which may result in an increased risk of therapeutic failure if all patients are administered a uniform dose. TAC has undoubtedly benefited from therapeutic drug monitoring, but interpretation of the blood concentration is confounded by the relative differences between the assays. Single time points, limited sampling strategies, and area under concentration-time curve have all been considered to determine the most appropriate sampling procedure that correlates with efficacy. Therapeutic trough TAC concentration ranges have changed since the initial introduction of the drug, while still maintaining adequate immunosuppression and avoiding drug-related adverse effects. Pharmacodynamic markers have also been considered advantageous to the clinician, which may better reflect efficacy and safety, taking into account the between-individual variability rather than whole blood concentrations. The choice of method, differences between methods, and potential pitfalls of the method should all be considered when determining TAC concentrations. The recommendations of this consensus meeting regarding the analytical methods include the following: encourage the development and promote the use of analytical methods displaying a lower limit of quantification (1 ng/mL), perform careful validation when implementing a new analytical assay, participate in external proficiency testing programs, promote the use of certified material as calibrators in high-performance liquid chromatography with mass spectrometric detection methods, and take account of the assay and intermethod bias when comparing clinical trial outcomes. It is also important to consider that TAC concentrations may also be influenced by other factors such as specific pharmacokinetic characteristics associated with the population, drug interactions, pharmacogenetics, adverse events that may alter TAC concentrations, and any change in the oral formulation that may result in pharmacokinetic changes. This meeting emphasized the importance of obtaining multicenter prospective trials to assess the efficacy of alternative strategies to TAC trough concentrations whether it is other single time points or area under the concentration-time curve Bayesian estimation using limited sampling strategies and to select, standardize, and validate routine biomarkers of TAC pharmacodynamics.
Cyclosporine and tacrolimus are immunosuppressive drugs largely used in renal transplantation. They are characterized by a wide inter-individual variability in their pharmacokinetics with a potential impact on their therapeutic efficacy or induced toxicity. CYP3A5 and P-glycoprotein appear as important determinants of the metabolism of these drugs. The objective of this study was to investigate the effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood concentrations in stable transplant patients. Stable renal transplant recipients receiving cyclosporine (n = 50) or tacrolimus (n = 50) were genotyped for CYP3A5*3 and *6, and MDR1 C1236T, G2677T/A and C3435T. Dose-adjusted trough blood levels (ng/ml per mg/kg body weight) as well as doses (mg/kg body weight) required to achieve target blood concentrations were compared among patients according to allelic status for CYP3A5 and MDR1. Dose-adjusted trough concentrations were three-fold and 1.6-fold higher in CYP3A5*3/*3 patients than in CYP3A5*1/*3 patients for tacrolimus and cyclosporine, respectively. In the case of tacrolimus, the difference was even more striking when considering CYP3A5*1/*1 patients showing dose-adjusted trough concentrations 5.8-fold lower than CYP3A5*3/*3 patients. For both drugs, no association was found between trough blood concentrations or dose requirement and MDR1 genotype. Multiple regression analyses showed that CYP3A5*1/*3 polymorphism explained up to 45% of the variability in dose requirement in relation to tacrolimus use. Given the importance of rapidly achieving target blood concentrations after transplantation, further prospective studies should consider the immediate post-graft period and assess the influence of this specific polymorphism. Beside non-genetic factors (e.g. steroids dosing, drugs interactions), CYP3A5 pharmacogenetic testing performed just before transplantation could contribute to a better individualization of immunosuppressive therapy.
For several days after antigenic stimulation, human cytolytic T lymphocyte (CTL) clones exhibit a decrease in their effector activity and in their binding to human leukocyte antigen (HLA)-peptide tetramers. We observed that, when in this state, CTLs lose the colocalization of the T cell receptor (TCR) and CD8. Effector function and TCR-CD8 colocalization were restored with galectin disaccharide ligands, suggesting that the binding of TCR to galectin plays a role in the distancing of TCR from CD8. These findings appear to be applicable in vivo, as TCR was observed to be distant from CD8 on human tumor-infiltrating lymphocytes, which were anergic. These lymphocytes recovered effector functions and TCR-CD8 colocalization after ex vivo treatment with galectin disaccharide ligands. The separation of TCR and CD8 molecules could be one major mechanism of anergy in tumors and other chronic stimulation conditions.
Minimally invasive video-assisted thyroidectomy (MIVAT) was described in 1998. In this study we collected the experience of four third-level referral centers that adopted this technique. A total of 336 patients (279 females, 57 males) were selected for MIVAT. Selection criteria were thyroid volume <15 ml, nodules not exceeding 3.5 cm of diameter, and an absence of thyroiditis, previous neck surgery, or previous irradiation. The procedure, totally gasless, is carried out through a 15 mm central incision above the sternal notch. Dissection is performed under endoscopic vision using conventional and endoscopic instruments. The mean operating time was 69.4 +/- 30.6 minutes for lobectomy (range 20-150 minutes) and 87.4 +/- 43.5 minutes for total thyroidectomy (range 30-220 minutes). The mean postoperative stay was 1.9 +/- 0.8 days. Postoperative complications were 7 transient and 1 definitive recurrent nerve palsies and 11 cases of hypoparathyroidism (9 transient, 2 definitive). Conversion to open surgery was necessary in 15 patients (4.5%). This study confirms in a large number of cases the safety and feasibility of MIVAT, even in different surgical settings where similar results were achieved. The complication rate was not different from that of standard thyroidectomy. Although the operating time appears longer than with conventional procedures, the learning curve demonstrates a sharp decrease with increasing experience and the introduction of new technologies. The number of patients eligible for this approach remains low, thereby limiting its use, but it should be considered a valid option in selected surgical centers, offering some advantages to patients in terms of cosmetic results and postoperative distress.
Genetic polymorphisms in biotransformation enzyme CYP3A5 (6986G >A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.