System-and acceptance-testing are primarily performed with manual practices in current software industry. However, these practices have several issues, e.g. they are tedious, error prone and time consuming with costs up towards 40 percent of the total development cost. Automated test techniques have been proposed as a solution to mitigate these issues, but they generally approach testing from a lower level of system abstraction, leaving a gap for a flexible, high system-level test automation technique/tool. In this paper we present JAutomate, a Visual GUI Testing (VGT) tool that fills this gap by combining image recognition with record and replay functionality for high system-level test automation performed through the system under test's graphical user interface. We present the tool, its benefits compared to other similar techniques and manual testing. In addition, we compare JAutomate with two other VGT tools based on their static properties. Finally, we present the results from a survey with industrial practitioners that identifies testrelated problems that industry is currently facing and discuss how JAutomate can solve or mitigate these problems.
Non-robust (fragile) test execution is a commonly reported challenge in GUI-based test automation, despite much research and several proposed solutions. A test script needs to be resilient to (minor) changes in the tested application but, at the same time, fail when detecting potential issues that require investigation. Test script fragility is a multi-faceted problem. However, one crucial challenge is how to reliably identify and locate the correct target web elements when the website evolves between releases or otherwise fail and report an issue. This paper proposes and evaluates a novel approach called similarity-based web element localization (Similo), which leverages information from multiple web element locator parameters to identify a target element using a weighted similarity score. This experimental study compares Similo to a baseline approach for web element localization. To get an extensive empirical basis, we target 48 of the most popular websites on the Internet in our evaluation. Robustness is considered by counting the number of web elements found in a recent website version compared to how many of these existed in an older version. Results of the experiment show that Similo outperforms the baseline; it failed to locate the correct target web element in 91 out of 801 considered cases (i.e., 11%) compared to 214 failed cases (i.e., 27%) for the baseline approach. The time efficiency of Similo was also considered, where the average time to locate a web element was determined to be four milliseconds. However, since the cost of web interactions (e.g., a click) is typically on the order of hundreds of milliseconds, the additional computational demands of Similo can be considered negligible. This study presents evidence that quantifying the similarity between multiple attributes of web elements when trying to locate them, as in our proposed Similo approach, is beneficial. With acceptable efficiency, Similo gives significantly higher effectiveness (i.e., robustness) than the baseline web element localization approach.
Fragile (i.e., non-robust) test execution is a common challenge for automated GUI-based testing of web applications as they evolve. Despite recent progress, there is still room for improvement since test execution failures caused by technical limitations result in unnecessary maintenance costs that limit its effectiveness and efficiency. One of the most reported technical challenges for web-based tests concerns how to reliably locate a web element used by a test script.This paper proposes the novel concept of Visually Overlapping Nodes (VON) that reduces fragility by utilizing the phenomenon that visual web elements (observed by the user) are constructed from multiple web-elements in the Document Object Model (DOM) that overlaps visually.We demonstrate the approach in a tool, VON Similo, which extends the state-of-the-art multi-locator approach (Similo) that is also used as the baseline for an experiment. In the experiment, a ground truth set of 1163 manually collected web element pairs, from different releases of the 40 most popular web applications on the internet, are used to compare the approaches' precision, recall, and accuracy.Our results show that VON Similo provides 94.7% accuracy in identifying a web element in a new release of the same SUT. In comparison, Similo provides 83.8% accuracy.These results demonstrate the applicability of the visually overlapping nodes concept/tool for web element localization in evolving web applications and contribute a novel way of thinking about web element localization in future research on GUI-based testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.