According to the age-of-acquisition hypothesis, words acquired early in life are processed faster and more accurately than words acquired later. Connectionist models have begun to explore the influence of the age ⁄ order of acquisition of items (and also their frequency of encounter). This study attempts to reconcile two different methodological and theoretical approaches (proposed by Lambon Ehsan, 2006 andSeidenberg, 2002) to age-limited learning effects. The current simulations extend the findings reported by Zevin and Seidenberg (2002) that have shown that frequency trajectories (FTs) have limited and specific effects on word-reading tasks. Using the methodological framework proposed by Lambon Ralph and Ehsan (2006), which makes it possible to compare word-reading and picture-naming tasks in connectionist networks, we were able to show that FT has a considerable influence on age-limited learning effects in a picture naming task. The findings show that when the input-output mappings are arbitrary (simulating picture naming tasks), the links formed by the network become entrenched as a result of early experience and that subsequent variations in frequency of exposure of the items have only a minor impact. In contrast, when the mappings between input-output are quasi-systematic or systematic (simulating word-reading tasks), the training of new items was generalized and resulted in the suppression of age-limited learning effects. At a theoretical level, we suggest that FT, which simultaneously takes account of time and the level of exposure across time, represents a more precise and modulated measure compared with the order of introduction of the items and may lead to innovative hypotheses in the field of age-limited learning effects.Correspondence should be sent to Martial Mermillod,
This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.