Community detection is a growing field of interest in the area of Social Network applications. Many community detection methods and surveys have been introduced in recent years, with each such method being classified according to its algorithm type. This chapter presents an original survey on this topic, featuring a new approach based on both semantics and type of output. Semantics opens up new perspectives and allows interpreting highorder social relations. A special focus is also given to community evaluation since this step becomes important in social data mining.
The number of documents is growing exponentially with the rapid expansion of the Web. The new challenge for Internet users is now to rapidly find appropriate data to their requests. Thus information retrieval, automatic classification and detection of opinions appear as major issues in our information society. Many efficient tools have already been proposed to Internet users to ease their search over the web and support them in their choices. Nowadays, users would like genuine decision tools that would efficiently support them when focusing on relevant information according to specific criteria in their area of interest. In this paper, we propose a new approach for automatic characterization of such criteria. We bring out that this approach is able to automatically build a relevant lexicon for each criterion. We then show how this lexicon can be useful for documents classification or segmentation tasks. Experiments have been carried out with real datasets and show the efficiency of our proposal.
With the widespread of social networks on the Internet, community detection in social graphs has recently become an important research domain. Interest was initially limited to unipartite graph inputs and partitioned community outputs. More recently bipartite graphs, directed graphs and overlapping communities have all been investigated. Few contributions however have encompassed all three types of graphs simultaneously. In this paper we present a method that unifies community detection for these three types of graphs while at the same time merges partitioned and overlapping communities. Moreover, the results are visualized in a way that allows for analysis and semantic interpretation. For validation purposes this method is experimented on some well-known simple benchmarks and then applied to real data: photos and tags in Facebook and Human Brain Tractography data. This last application leads to the possibility of applying community detection methods to other fields such as data analysis with original enhanced performances.
With the new possibilities in communication and information management, social networks and photos have received plenty of attention in the digital age. In this paper, we show how social photos, captured during family events, representing individuals or groups, can be visualized as a network that reveals social attributes. From this photo network, a social network is extracted that can help to build personalized albums. The photo network organization makes use of Formal Concept Analysis methods.
Abstract. In this paper, we focus on classifying documents according to opinion and value judgment they contain. The main originality of our approach is to combine linguistic pre-processing, classification and a voting system using several classification methods. In this context, the relevant representation of the documents allows to determine the features for storing textual data in data warehouses. The conducted experiments on very large corpora from a French challenge on text mining (DEFT) show the efficiency of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.