Visible and near-infrared (Vis-NIR) diffuse reflectance spectroscopy with partial least squares (PLS) regression is a quick, cost-effective, and promising technology for predicting soil properties. The advantage of PLS regression is that all available wavebands can be incorporated in the model, while earlier studies indicate that PLS models include redundant wavelengths, and selecting specific wavebands can refine PLS analyses. This study evaluated the performance of PLS regression with waveband selection using Vis-NIR reflectance spectra to estimate the total carbon (TC) and total nitrogen (TN) in soils collected mainly from the surface of upland and lowland rice fields in Madagascar (n = 59; after outliers were removed). We used iterative stepwise elimination-based PLS (ISE-PLS) to estimate soil TC and TN and compared the predictive ability with standard full-spectrum PLS (FS-PLS). The predictive abilities were assessed using the coefficient of determination (R 2 ), the root mean squared error of cross-validation (RMSECV), and the residual predictive deviation (RPD). Overall, ISE-PLS using first derivative reflectance (FDR) showed a better predictive accuracy than ISE-PLS for both TC (R 2 = 0.972, RMSECV = 0.194, RPD = 5.995) and TN (R 2 = 0.949, RMSECV = 0.019, RPD = 4.416) in the soil of Madagascar. The important wavebands for estimating TC (12.59% of all wavebands) and TN (3.55% of all wavebands) were selected from all 2001 wavebands over the 400-2400 nm range using ISE-PLS. These findings suggest that ISE-PLS based on Vis-NIR diffuse reflectance spectra can be used to estimate soil TC and TN contents in Madagascar with an improved predictive accuracy.
As a laboratory proximal sensing technique, the capability of visible and near-infrared (Vis-NIR) diffused reflectance spectroscopy with partial least squares (PLS) regression to determine soil properties has previously been demonstrated. However, the evaluation of the soil phosphorus (P) content—a major nutrient constraint for crop production in the tropics—is still a challenging task. PLS regression with waveband selection can improve the predictive ability of a calibration model, and a genetic algorithm (GA) has been widely applied as a suitable method for selecting wavebands in laboratory calibrations. To develop a laboratory-based proximal sensing method, this study investigated the potential to use GA-PLS regression analyses to estimate oxalate-extractable P in upland and lowland soils from laboratory Vis-NIR reflectance data. In terms of predictive ability, GA-PLS regression was compared with iterative stepwise elimination PLS (ISE-PLS) regression and standard full-spectrum PLS (FS-PLS) regression using soil samples collected in 2015 and 2016 from the surface of upland and lowland rice fields in Madagascar (n = 103). Overall, the GA-PLS model using first derivative reflectance (FDR) had the best predictive accuracy (R2 = 0.796) with a good prediction ability (residual predictive deviation (RPD) = 2.211). Selected wavebands in the GA-PLS model did not perfectly match wavelengths of previously known absorption features of soil nutrients, but in most cases, the selected wavebands were within 20 nm of previously known wavelength regions. Bootstrap procedures (N = 10,000 times) using selected wavebands also confirmed the improvements in accuracy and robustness of the GA-PLS model compared to those of the ISE-PLS and FS-PLS models. These results suggest that soil oxalate-extractable P can be predicted from Vis-NIR spectroscopy and that GA-PLS regression has the advantage of tuning optimum bands for PLS regression, contributing to a better predictive ability.
As a proximal soil sensing technique, laboratory visible and near-infrared (Vis-NIR) spectroscopy is a promising tool for the quantitative estimation of soil properties. However, there remain challenges for predicting soil phosphorus (P) content and availability, which requires a reliable model applicable for different land-use systems to upscale. Recently, a one-dimensional convolutional neural network (1D-CNN) corresponding to the spectral information of soil was developed to considerably improve the accuracy of soil property predictions. The present study investigated the predictive ability of a 1D-CNN model to estimate soil available P (oxalate-extractable P; Pox) content in soils by comparing it with partial least squares (PLS) and random forest (RF) regressions using soil samples (n = 318) collected from natural (forest and non-forest) and cultivated (upland and flooded rice fields) systems in Madagascar. Overall, the 1D-CNN model showed the best predictive accuracy (R2 = 0.878) with a highly accurate prediction ability (ratio of performance to the interquartile range = 2.492). Compared to the PLS model, the RF and 1D-CNN models indicated 4.37% and 23.77% relative improvement in root mean squared error values, respectively. Based on a sensitivity analysis, the important wavebands for predicting soil Pox were associated with iron (Fe) oxide, organic matter (OM), and water absorption, which were previously known wavelength regions for estimating P in soil. These results suggest that 1D-CNN corresponding spectral signatures can be expected to significantly improve the predictive ability for estimating soil available P (Pox) from Vis-NIR spectral data. Rapid and accurate estimation of available P content in soils using our results can be expected to contribute to effective fertilizer management in agriculture and the sustainable management of ecosystems. However, the 1D-CNN model will require a large dataset to extend its applicability to other regions of Madagascar. Thus, further updates should be tested in future studies using larger datasets from a wide range of ecosystems in the tropics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.