We study some constructions on distributions in a uniform p‐adic context, and also in large positive characteristic, using model theoretic methods. We introduce a class of distributions which we call distributions of scriptC exp ‐class and which is based on the notion of scriptC exp ‐class functions from Cluckers and Halupczok [J. Ecole Polytechnique (JEP) 5 (2018) 45–78]. This class of distributions is stable under Fourier transformation and has various forms of uniform behavior across non‐archimedean local fields. We study wave front sets, pull‐backs and push‐forwards of distributions of this class. In particular, we show that the wave front set is always equal to the complement of the zero locus of a scriptC exp ‐class function. We first revise and generalize some of the results of Heifetz that he developed in the p‐adic context by analogy to results about real wave front sets by Hörmander. In the final section, we study sizes of neighborhoods of local constancy of Schwartz–Bruhat functions and their push‐forwards in relation to discriminants.
SINGULARITÉS À L'INFINI ET INTÉGRATION MOTIVIQUE par Michel RaibautRésumé. -Soit k un corps de caractéristique nulle et f une fonction non constante définie sur une variété lisse. Nous définissons dans cet article une fibre de Milnor motivique à l'infini qui appartient à un anneau de Grothendieck des variétés. Elle est définie en termes d'une compactification choisie, non nécessairement lisse, mais est indépendante de ce choix. Lorsque k est le corps des nombres complexes, en utilisant le morphisme de réalisation de Hodge, elle se réalise en le spectre à l'infini de f . Nous la calculons par exemple, dans le cas d'un polynôme non dégénéré pour son polyèdre de Newton à l'infini.Pour toute valeur a, nous définissons une fibre de Milnor motivique complète S f,a qui prolonge la fibre de Milnor motivique usuelle S f −a . Ceci permet d'introduire des valeurs motiviquement atypiques, un ensemble de bifurcation motivique de f et une notion de fonction motiviquement modérée.Abstract (Singularities at infinity and motivic integration). -Let k be a field of characteristic zero and f be a non constant function defined on a smooth variety. We construct in this article a motivic Milnor fiber at infinity which belongs to a Grothendieck ring of varieties. It is defined in terms of a chosen compactification, not necessary smooth, but is shown to be independent of this choice. When k is the field of complex numbers, using the Hodge realization morphism, it specializes to the Texte reçu le 29 novembre 2010, accepté le 29 avril 2011.
In this paper we use motivic integration and non-archimedean analytic geometry to study the singularities at infinity of the fibers of a polynomial map f : A d C → A 1 C . We show that the motive S
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.