Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) is a member of a family of polycationic PEG-grafted copolymers that have been shown to chemisorb on anionic surfaces, including various metal oxide surfaces, providing a high degree of resistance to protein adsorption. PLL-g-PEG-modified surfaces are attractive for a variety of applications including sensor chips for bioaffinity assays and blood-contacting biomedical devices. The analytical and structural properties of PLL-g-PEG adlayers on niobium oxide (Nb2O5), tantalum oxide (Ta2O5), and titanium oxide (TiO2) surfaces were investigated using reflection-absorption infrared spectroscopy (RAIRS), angle-dependent X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The combined analytical information provides clear evidence for an architecture with the cationic poly(L-lysine) attached electrostatically to the oxide surfaces (charged negatively at physiological pH) and the poly(ethylene oxide) side chains extending out from the surface. The relative intensities of the vibrational modes in the RAIRS spectra and the angle-dependent XPS data point to the PLL backbone being located directly at and parallel to the oxide/polymer interface, whereas the PEG chains are preferentially oriented in the direction perpendicular to the surface. Both positive and negative ToF-SIMS spectra are dominated by PEG-related secondary ion fragments with strongly reduced metal (oxide) intensities pointing to an (almost) complete coverage by the densely packed PEG comblike grafts. The three different transition metal oxide surfaces with isoelectric points well below 7 were found to behave very similarly, both in respect to the kinetics of the polymer adlayer adsorption and properties as well as in terms of protein resistance of the PLL-g-PEG-modified surface. Adsorption of serum and fibrinogen was evaluated using the OWLS optical planar waveguide technique. The amount of human serum adsorbed on the modified surfaces was consistently below the detection limit of the optical sensor technique used (<1-2 ng cm -2 ), and fibrinogen adsorption was reduced by 96-98% in comparison to the nonmodified (bare) oxide surfaces.
Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) copolymers with various grafting ratios were adsorbed to niobium pentoxide-coated silicon wafers and characterized before and after protein adsorption using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Three proteins of different sizes, myoglobin (16 kD), albumin (67 kD), and fibrinogen (340 kD), were studied. XPS was used to quantify the amount of protein adsorbed to the bare and PEGylated surfaces. ToF-SIMS and principal component analysis (PCA) were used to study protein conformational changes on these surfaces. The smallest protein, myoglobin, generally adsorbed in higher numbers than the much larger fibrinogen. Protein adsorption was lowest on the surfaces with the highest PEG chain surface density and increased as the PEG layer density decreased. The highest adsorption was found on lysine-coated and bare niobium surfaces. ToF-SIMS and PCA data evaluation provided further information on the degree of protein denaturation, which, for a particular protein, were found to decrease with increasing PEG surface density and increase with decreasing protein size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.