An LC/MS/MS method is presented for the determination of hydrogen cyanide in cigarette mainstream smoke. Cyanide is derivatized with 2,3-naphthalenedicarboxaldehyde and taurine to form a benzo[f]isoindole derivative, which is then analyzed by LC/MS/MS. Isotopic KCN (K13C15N) was used as an internal standard. The regression equation was linear within the range 2.4331 ng/mL for cyanide with a correlation coefficient >0.999. The LOD was calculated as 4.1 ng/cigarette. The influence of the sodium hydroxide trapping solution concentration on the results is discussed. A 1 M solution showed the best results in terms of sample stability and trapping efficiency. The method proved to be robust, reliable, and more selective than current methods, making it a logical choice for determination of total cyanide in cigarette smoke.
Despite the growing popularity of new alternatives to traditional tobacco products, there is still limited evidence on their indoor effect in particular in residential spaces as specific environments where enforcement of air quality standards is difficult. Hence, the impact of the Tobacco Heating System 2.2 (THS, marketed as IQOS®) on indoor air quality was assessed under controlled experimental conditions using ventilation representative of residential buildings with natural ventilation. Smoking of cigarettes (Marlboro Gold®) at the same ventilation conditions and consumption rates was used as positive control. Before each THS 2.2 or Marlboro Gold session, a background session with the same volunteers as for the product-use session was held. In the high-load simulated residential environment, out of the 24 measured airborne constituents, only the increase of the indoor concentrations of nicotine, acetaldehyde, and glycerin above the background was attributable to the use of THS 2.2. The quantified concentrations of these three airborne compounds were significantly below the harmful levels defined in the air quality guidelines. Smoking Marlboro Gold resulted in much greater increases in the concentrations of all measured indoor air constituents, except for glycerin, and the indoor concentrations of several constituents exceeded the exposure levels set forth by cognizant authorities. Based on these data, it is reasonable to conclude that the use of THS 2.2 in environments where norms for indoor exposure in terms of adequate ventilation are respected does not adversely affect the overall indoor air quality.
Because many physicochemical properties of tobacco are highly sensitive to its moisture content, the determination of water level is an important parameter for tobacco characterization. A headspace volumetric Karl Fischer titration (HS-V-KFT) method is presented for the quantification of water content in different finished tobacco materials. The parameters affecting the extraction of water from the tobacco materials were the sample size and the oven temperature which have been optimized. The extraction of water from the samples was achieved within a reasonable time (<25 min) with a sample size of 200 mg and an optimum temperature of between 90 °C and 100 °C. The results of the water determination by HS-V-KFT at the optimized parameters were in good agreement with those obtained by standard volumetric Karl Fischer titration. HS-V-KFT showed very good repeatability (RSDr 0.9%) and intermediate precision (RSDiR 1.1%). With respect to a considerable time saving, solvent consumption reduction, precision and accuracy, HS-V-KFT can therefore be suggested as the method of choice to determine water amount in finished tobacco products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.