The Cambrian Stage 3 Chengjiang biota in South China is one of the most influential Konservat-Lagerstätten worldwide thanks to the fossilization of diverse non-biomineralizing organisms through pyritization. Despite their contributions to understanding the evolution of early animals, several Chengjiang species remain poorly known owing to their scarcity and/or incomplete preservation. Here, we use micro-computed tomography to reveal in detail the ventral appendage organization of the enigmatic non-trilobite artiopod Pygmaclypeatus daziensis —one of the rarest euarthropods in Chengjiang—and explore its functional ecology and broader evolutionary significance. Pygmaclypeatus daziensis possesses a set of uniramous antennae and 14 pairs of post-antennal biramous appendages, the latter of which show an unexpectedly high degree of heteronomy based on the localized differentiation of the protopodite, endopodite and exopodite along with the antero-posterior body axis. The small body size (less than 2 cm), the presence of delicate spinose endites and well-developed exopodites with multiple paddle-shaped lamellae on the appendages of P. daziensis indicate a nekto-benthic mode of life and a scavenging/detritus feeding strategy. Pygmaclypeatus daziensis shows that appendage heteronomy is phylogenetically widespread within Artiopoda—the megadiverse clade that includes trilobites and their relatives with non-biomineralizing exoskeletons—and suggests that a single exopodite lobe with paddle-like lamellae is ancestral for this clade. This article is part of the theme issue ‘The impact of Chinese palaeontology on evolutionary research’.
Swimming crabs of the taxon Portunoidea show specialized, paddle-shaped fifth pereiopods (P5), which play a role in these crabs' ability to swim. In this study, the morphology of the fifth pereiopod in swimming and non-swimming crabs was studied in detail and the mobility in the articulations between podomeres was calculated from reconstructed three-dimensional (3D)-models. This way, we aimed to provide new estimates of kinematic parameters, and to answer the question on a possible homology of the P5 within several portunoid clades. We measured and compared podomere length ratios, orientations of the joint axes, and modeled single range of motion (sROM) of each joint as well as the total range of motion (tROM) of all joints of the P5 as a whole. Seven Portunoidea species, four of them belonging to the P5-swimming crab morphotype (Liocarcinus depurator, Polybius henslowii, Callinectes sapidus, Portunus pelagicus) and three not belonging to this morphotype (Carcinus aestuarii, Portumnus latipes, and with uncertain status Carupa tenuipes) were compared with the non-portunoids Sternodromia monodi, Ranina ranina, Raninoides bouvieri, Eriocheir sinensis, Varuna litterata, Ashtoret lunaris, and Cancer pagurus. The study was carried out using a combination of microcomputer tomography (μCT)-techniques and 3D-reconstructions. The μCT-data were used to create surface models of the P5 in Amira, which were then 3Danimated and manipulated in Maya to qualitatively compare modeled kinematic parameters. Results show that the merus and carpus in swimming crabs are shorter than in non-swimming crabs, while sROM angles are generally larger. The tROM of all joints expressed as Euclidean distances is generally higher in the portunoids (except for Carcinus). Our comparison of the complete trajectory of the dactylus tip regarding all maximum joint positions of the studied species suggests that the P5-swimming leg might have evolved once in the Portunoidea and got lost afterward in certain clades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.