Communicated by Roger TemamR6sum6. Une nouvelle m6thode qui g6n6ralise l'algorithme standard des approximations successives est d6velopp6e en vue de d6terminer les points fixes (x*) d'op6rateurs qui admettent une d6riv6e de Fr6chet (A) en x* (seulement) telle que A-I soit injectif. Cette m&hode peut &re appliqu6e en particulier au calcul des solutions de probl6mes non lin6aires au-del~ d'un point de bifurcation, ce qui fait l'objet de la premiere partie. On explicite ensuite dans la deuxi~me partie l'application de cette m6thode ~ un probl6me/~ frontibre libre intervenant en physique des plasmas.Abstract. A new method extending the standard successive approximation algorithm is developed for the determination of fixed points (x*) of operators having a Frechet-derivative (A) at x* (but not everywhere) such that A-1 is injective. This method can specially be applied to compute solutions of nonlinear problems past a point of bifurcation (first part). The application of this method to a free boundary value problem arising in plasma physics is then given in a second part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.