Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.
A total of 23 whale sharks were identified over a 5 d period in the Arta Bay region of the Gulf of Tadjora, Djibouti. Most of the sharks aggregating in this area were small (<4 m TL) males. Individuals were identified using photographs of distinctive scars and spot and stripe patterns on the sides of the animals. Of these, 65% had scarring that was attributable to boat or propeller strikes. Most of the whale sharks we encountered were feeding on dense accumulations of plankton in shallow water just off (10-200 m) the shoreline. This food source may account for the aggregation of sharks in this area. One 3 m male shark was tagged with an ARGOS (Splash) satellite tag for 9 d. During this time the shark traversed to the shoreline on the opposite side of the Gulf (a distance of 14 km) and then returned to the Arta Bay area before retracing his path to the other shore. The shark spent most of the daylight hours at the surface, while at night dives were more frequent, deeper and for longer durations.
Abstract. In coastal waters of several locations globally, whale sharks (Rhincodon typus) form seasonal aggregations, most of which largely comprise juvenile males of 4-8 m length. Evaluation of the period that individuals stay within these size-and age-specific groupings will clarify our understanding of the transition between life-stages in this species and how this might affect their long-term conservation. Long-term photo-identification studies in Seychelles and Djibouti provided data to evaluate this.
The description of genetic population structure over a species' geographic range can provide insights into its evolutionary history and also support effective management efforts. Assessments for globally distributed species are rare, however, requiring significant international coordination and collaboration. The global distribution of demographically discrete populations for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of appropriate management units. Here, we present the first circumglobal assessment of mitochondrial genetic population structure across the species' range in the Southern Hemisphere and Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals sampled across 14 breeding stocks and subpopulations currently recognized by the International Whaling Commission. We assess genetic diversity and test for genetic differentiation and also estimate the magnitude and directionality of historic matrilineal gene flow between putative populations. Our results indicate that maternally directed site fidelity drives significant genetic population structure between breeding stocks within ocean basins. However, patterns of connectivity differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal movements on feeding areas. The number of population comparisons observed to be significantly differentiated were found to diminish at the subpopulation scale when nucleotide differences were examined, indicating that more complex processes underlie genetic structure at this scale. It is crucial that these complexities and uncertainties are afforded greater consideration in management and regulatory efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.