BACKGROUND: Tomato, one of the most important vegetables worldwide, contains a range of flavonoids and phenolic acids in addition to lycopene, which are regarded as potentially useful compounds with respect to health benefits. Composition data in fresh tomatoes vary due to genetic and environmental factors and cultural practices. Breeding programs aim to produce tomatoes with enhanced levels of flavonoids and other phenolics.
Tomatoes ( Lycopersicon esculentum Mill.) have been recognized as an important source of dietary flavonoids because of a high consumption worldwide. The qualitative and quantitative flavonoid compositions of assorted tomato cultivars including individual quantitative contributions of the five most significant flavonoids have been determined in this work. The dihydrochalcone phloretin 3',5'-di-C-beta-glucopyranoside and the flavonol quercetin 3-O-(2''-O-beta-apiofuranosyl-6''-O-alpha-rhamnopyranosyl-beta-glucopyranoside) were identified for the first time in Solanaceae spp. and found to be among the main flavonoids in all cultivars. Phloretin 3',5'-di-C-glc is the first C-glycoside identified in tomatoes and also the first dihydrochalcone from this species. In addition, chalconaringenin, kaempferol 3-rutinoside, and quercetin 3-rutinoside (rutin), though previously reported to occur in tomato, were fully characterized by extensive use of 2D NMR techniques and high-resolution LCMS. The total flavonoid content of different tomato types varied from 4 to 26 mg 100 (-1) g FW with chalconaringenin as the predominant compound comprising 35 to 71% of the total flavonoid content. The individual quantities of quercetin 3-O-(2''- O-beta-apiofuranosyl-6''- O-alpha-rhamnopyranosyl-beta-glucopyranoside) and phloretin 3',5'-di-C-beta-glucopyranoside was similar to that of rutin in several cultivars.
The flavonoid pathway is known to be up-regulated by different environmental stress factors. Down-regulation of the pathway is much less studied and is emphasized in the present work. Flavonoid accumulation was induced by exposing plants for 1 week to nitrogen depletion at 10°C, giving high levels of anthocyanins and 3-glucoside-7-rhamnosides, 3,7-di-rhamnosides and 3-rutinoside-7-rhamnosides of kaempferol and quercetin. Flavonol accumulation as influenced by temperatures and nitrogen supply was not related to the glycosylation patterns but to the classification as quercetin and kaempferol. When nitrogen was re-supplied, transcripts for main regulators of the pathway, PAP1/GL3 and PAP2/MYB12, fell to less than 1 and 0.1% of initial values, respectively, during 24 h in the 15-30°C temperature range. Anthocyanins showed a half-life of approximately 1 d, while the degradation of flavonols was much slower. Interestingly, the initial fluxes of anthocyanin and flavonol degradations were found to be temperature-independent. A kinetic model for the flavonoid pathway was constructed. In order to get the observed concentration-temperature profiles as well as the temperature compensation in the flavonoid degradation flux, the model predicts that the flavonoid pathway shows an increased temperature sensitivity at the end of the pathway, where the up-regulation by PAP/GL3 has been found to be largest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.