We developed a new approach for producing graphene-like (GL) materials through a two-steps oxidation/reduction method starting from a nanostructured (high surface) carbon black, a versatile carbonaceous material prone to be structurally and chemically modified in quite mild wet conditions. Atomic Force Microscopy and zetapotential measurements allowed to model the assembling mechanisms and the role of hydrophobic interactions, demonstrating the possibility to easily tune the surface morphology. GL materials have been then employed in a large variety of hybrid materials for innovative applications, and characterized by chemical, electrical, structural and spectroscopic techniques. With Metal-Organic Frameworks, GL produced conducting composites with electrical conductivity tunable by changing the concentration of the parent materials; Eumelanin/GL and TiO 2 -nanoparticles/GL were also studied for photocatalysis and biosensors applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.