Drugs of abuse, including, nicotine have been shown to enhance brain reward functions in the mesocortico-limbic dopamine (DA) system in general, and the nucleus accumbens in particular. The latter occupies a prominent position in the ventral striatum and expresses a high density of DA D 3 receptors. As such, the present study aimed at investigating the effect of the selective D 3 receptor antagonist SB-277011-A on both the stable maintenance of intravenous nicotine self-administration and nicotine-triggered relapse to nicotine-seeking behavior in the rat. SB-277011-A (3-10 mg/kg i.p.) significantly reduced reinstatement of nicotine-seeking behavior without affecting nicotine self-administration per se. These results suggest that DA D 3 receptors are involved in the reinstatement of nicotine-seeking behavior independently of any interaction with the primary reinforcing effects of nicotine itself. These findings point toward the potential use of selective DA D 3 receptor antagonists for the pharmacotherapeutic management of relapse to drug-seeking behaviors.
The discovery of new highly potent and selective dopamine D3 receptor antagonists has recently permitted characterization of the role of the dopamine D3 receptor in a wide range of preclinical animal models. A novel series of 1,2,4-triazol-3-yl-thiopropyl-tetrahydrobenzazepines demonstrating a high level of D3 affinity and selectivity with an excellent pharmacokinetic profile is reported here. In particular, the pyrazolyl derivative 35 showed good oral bioavailability and brain penetration associated with high potency and selectivity in vitro. In vivo characterization of 35 confirmed that this compound blocks the expression of nicotine- and cocaine-conditioned place preference in the rat, prevents nicotine-triggered reinstatement of nicotine-seeking behavior in the rat, reduces oral operant alcohol self-administration in the mouse, increases extracellular levels of acetylcholine in the rat medial prefrontal cortex, and potentiates the amplitude of the relative cerebral blood volume response to d-amphetamine in a regionally specific manner in the rat brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.