The controversial nature of the fluorescent properties of carbon dots (CDs), ascribed either to surface states or to small molecules adsorbed onto the carbon nanostructures, is an unresolved issue. To date, an accurate picture of CDs and an exhaustive structure-property correlation are still lacking. Using two unconventional spectroscopic techniques, fluorescence correlation spectroscopy (FCS) and time-resolved electron paramagnetic resonance (TREPR), we contribute to fill this gap. Although electron micrographs indicate the presence of carbon cores, FCS reveals that the emission properties of CDs are based neither on those cores nor on molecular species linked to them, but rather on free molecules. TREPR provides deeper insights into the structure of carbon cores, where C sp domains are embedded within C sp scaffolds. FCS and TREPR prove to be powerful techniques, characterizing CDs as inherently heterogeneous systems, providing insights into the nature of such systems and paving the way to standardization of these nanomaterials.
Nanoparticles (NPs) emitting in the second biological near infrared (NIR) window of the electromagnetic spectrum have been successfully synthesized by growing a silica shell on the hydrophobic surface of OLEA/TOP PbS nanocrystals (NCs), by means of a reverse microemulsion approach, and subsequently decorated with biotin molecules. The fabrication of very uniform and monodisperse NPs, formed of SiO₂ shell coated single core PbS NCs, has been demonstrated by means of a set of complementary optical and structural techniques (Vis-NIR absorption and photoluminescence spectroscopy, transmission electron microscopy) that have highlighted how experimental parameters, such as PbS NC and silica precursor concentration, are crucial to direct the morphology and optical properties of silica coated PbS NPs. Subsequently, the silica surface of the core-shell NPs has been grafted with amino groups, in order to achieve covalent binding of biotin to NIR emitting silica coated NPs. Finally the successful reaction with a green-fluorescent labelled streptavidin has verified the molecular recognition response of the biotin molecules decorating the PbS@SiO₂ NP surface. Dynamic light scattering (DLS) and ζ-potential techniques have been used to monitor the hydrodynamic diameter and colloidal stability of both PbS@SiO₂ and biotin decorated NPs, showing their high colloidal stability in physiological media, as needed for biomedical applications. Remarkably the obtained biotinylated PbS@SiO₂ NPs have been found to retain emission properties in the 'second optical window' of the NIR region of the electromagnetic spectrum, thus representing attractive receptor-targeted NIR fluorescent probes for in vivo tumour imaging.
We demonstrate the fabrication of all-inorganic heterostructured n-p junction devices made of colloidal PbS quantum dots (QDs) and TiO2 nanorods (NRs). The entire device fabrication procedure relies on room-temperature processing, which is compatible with flexible plastic substrates and low-cost production. Through Kelvin Probe Force Microscopy and femtosecond pump and probe spectroscopy we decipher the electron transfer process occurring at the interface between the colloidal PbS QDs and TiO2 anatase NRs. Overall we demonstrate a high power conversion efficiency of similar to 3.6% on glass and similar to 1.8% on flexible substrates, which is among the highest reported for entirely inorganic-nanocrystal based solar cells on plastic supports
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.