Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Phosphatidylinositol 4,5–biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4+ T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4–phosphate 5–kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions.
A spotlight has been focused on the mosquito-borne Zika virus (ZIKV) because of its epidemic outbreak in Brazil and Latin America, as well as the severe neurological manifestations of microcephaly and Guillain-Barré syndrome associated with infection. In this review, we discuss the recent literature on ZIKV-host interactions, including new mechanistic insight concerning the basis of ZIKV-induced neuropathogenesis.
Several studies in the last years evidenced that deregulation of proapoptotic and antiapoptotic pathways are key players in the onset and maintenance of chemoresistance in advanced ovarian cancers. To characterize the signaling events and molecules involved in the acquisition of cisplatin resistance, we used the human ovarian cancer cell line A2780 and its derivative cisplatin-resistant subline A2780 CIS. We found that the mitochondrial intrinsic apoptotic pathway, induced by cis-dichlorodiammineplatinum (CDDP) in A2780 wild-type cells, was compromised in the resistant subline CIS. The analysis of expression of proteins involved in mitochondriadependent apoptosis revealed a role of Bax and p73 but not p53. Indeed, we found that CDDP treatment induced the up-regulation of p53 in both sensitive and resistant A2780 cell lines. By contrast, p73 and Bax expressions were compromised in resistant cells. Pretreatment of resistant A2780 CIS cells with the histone deacetylase inhibitor trichostatin A overcomes apoptosis resistance to CDDP by restoring both p73 and Bax but not p53 expression. Altogether, these data indicate that p73, but not p53, is involved in the regulation of apoptosis susceptibility to cisplatin in A2780 ovarian cancer cells and evidence a key contribution of histone deacetylase activation in the acquisition of chemotherapy resistance in human ovarian cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.