The aim of the work was to monitor the presence of Listeria monocytogenes in cold-smoked fish products (trout, salmon, and sea bass) marketed in Italy. Cold-smoked sea bass is a new product that has not yet been commercialized and was collected from the production facility. Monitoring data have shown that cold-smoked products can be contaminated by L. monocytogenes, the presence of which has been highlighted mainly by enrichment culture (presence in 25 g). The isolated Listeria were serotyped and belonged mainly to low-virulence serotypes (1/2c), followed by serotypes 1/2a, 1/2b, and 4b. Furthermore, considering the ability of L. monocytogenes to grow in these products due to their chemical–physical characteristics (pH > 6.0, Aw > 0.97) and long shelf life at 4°C, an additional aim was to verify the activity of different bioprotective starters, including Lactilactobacillus sakei (LAK-23, Sacco srl, Via Alessandro Manzoni 29/A, 22071 Cadorago, CO, Italy), Carnobacterium spp., Lacticaseibacillus casei (SAL 106), and Lacticaseibacillus paracasei (SAL 211), in cold-smoked sea bass. All starters were bacteriocin producers. For this experiment, smoked sea bass samples were intentionally inoculated with a mixture of three different strains of L. monocytogenes and of each starter culture. After inoculation, the smoked sea bass were vacuum-packed and stored at 6 ± 2°C for 60 days, simulating the typical abuse storage temperature of markets and home refrigerators. At 0, 15, 30, 45, and 60 days, the sea bass samples were analyzed to evaluate the effectiveness of the starters against L. monocytogenes. Listeria monocytogenes growth was prevented only by the addition of the LAK-23 starter. Indeed, at the end of the shelf life, the amount of L. monocytogenes observed was similar to that in the inoculum. Consequently, the use of this starter can allow the inclusion of cold-smoked sea bass or smoked fish products in category 1.3 of Regolamento CE 2073/2005, which are products that do not support the growth of this microorganism. Finally, the activity of the LAK-23 starter did not produce an off flavor or off odor in the smoked sea bass.
Seafood products are one of the most perishable foods, and their shelf life is limited by enzymatic and microbial spoilage. Developing methods to extend the shelf life of fresh fish could reduce food waste in the fishery industry, retail stores, and private households. In recent decades, the application of lactic acid bacteria (LAB) as bioprotective cultures has become a promising tool. In this study, we evaluated the use of four starter cultures, previously selected for their properties as bioprotective agents, for sea bass and sea bream burgers biopreservation. Starter cultures impacted the microbial populations, biochemical parameters (pH, TVB-N), and sensory properties of fish burgers, during 10 days of storage at 4 °C and then 20 days at 8 °C in modified atmosphere packaging (MAP). Also, storage time influenced the microbial and physicochemical characteristics of all the tested samples, except for TVB-N values, which were significantly higher in the uninoculated burgers. The volatilome changed in the different treatments, and in particular, the samples supplemented with starter presented a profile that described their rapid growth and colonization, with the production of typical molecules derived from their metabolism. The addition of bioprotective cultures avoided bloating spoilage and improved the sensory parameters of the burgers. The shelf life of the fish burgers supplemented with starter cultures could be extended up to 12 days.
Fish meat is very perishable because of indigenous and microbial enzymes, which determine spoilage and shelf life. The deterioration processes, which lead to an important, sequential, and progressive modification of the initial state of freshness, are fast and depend on rearing, harvesting, slaughtering, handling, and storage conditions. Usually, the shelf life of gutted fish stored at 4 ± 2 °C under vacuum packaging (VP—1.0 bar) and modified atmosphere packaging (MAP, 70% N2, <1% O2, 30% CO2) is approximately 9 days. The aim of this work was to improve the shelf life and preserve the microbiological and sensory quality of farmed gutted sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) using different methods, including VP, MAP, and bioprotective culture containing Latilactobacillus sakei, until 12–14 days. Microbiological, physicochemical, and sensory quality indices were monitored to confirm the effectiveness of biopreservation on product quality during proper refrigeration (4 ± 2 °C) or abuse (6 ± 2 °C, simulating supermarkets and consumer fridges) storage period. Considering the quality indexes represented by Enterobacteriaceae, total volatile nitrogen (TVB-N), and malonaldehyde concentrations (TBARS) and the sensorial analysis, the VP samples were more acceptable than the MAP fish, even though the shelf-life of the VP and MAP fish was similar at about 12 days. The second phase of the work was to evaluate the shelf-life of both VP fish stored at 6 ± 2 °C, which simulates the normal abuse temperature of supermarkets or consumer fridges. Data confirmed the previous results and demonstrated, despite the abuse temperature of storage, a shelf-life of about 12 days. Finally, the third phase consisted of prolonging the shelf life until 14 days of storage at 6 ± 2 °C by washing the gutted sea bass and sea bream in a suspension of bioprotective starter (7 log CFU/mL) with or without the addition of dextrose (0.1%) and by VP packaging. The bioprotective culture reduced the growth of spoilage microorganisms. Consequently, the total volatile nitrogen (TVB-N) concentration in both fish species was low (<35 mg N/100 g). Nonprofessional and untrained evaluators confirmed the acceptability of the inoculated samples by sensorial analysis.
Lacticaseibacillus casei N87 was used as starter culture for the production of fermented sausages. The strain was cultivated in anaerobic (A) and respiratory (growth in presence of oxygen and supplementation with haeme and menaquinone in the growth medium; R) conditions. Control without the starter culture inoculation and with the addition of 150 mg/kg of nitrate was also included. The effect on physico-chemical parameters (pH, Aw, weight loss, and color), microbial population, volatilome, proteolysis as well as the survival of the strain was evaluated during 90 days of ripening. Q-PCR and DGGE-PCR analyses demonstrated the ability of the strain used in this study to adapt to this environment and carry out the sausage's fermentation process. The inoculation of the strain did not have any effect on the Aw values, which decreased similarly in the different samples whereas the pH was lower in A samples (5.2) and the weight loss in R samples (2.5% less than the others). The color parameters of the samples inoculated with the starter cultures were comparable to those of the control added with nitrate. The concentration of aldehydes that usually are identified as marker of oxidation processes was similar in the samples inoculated with the starter cultures adapted under respiratory conditions and in the control. On the contrary, a higher level was detected in the samples inoculated with the starter cultivated under anaerobic conditions. The proteolysis that occurred during the ripening indicates the differentiation of the A samples from the others. Nonetheless, the volatile profiles of the inoculated fermented sausages were similar. The study demonstrated that aerobic adaptation of Lcb. casei N87 starter culture gave similar color parameters and amounts of aldehydes in sausages fermentations without nitrate compared to conventional fermentations with nitrate.
The aim of this work was to investigate the microorganisms and their metabolites responsible for the spoilage of goose sausages produced in a small facility in Lombardy, a northern region of Italy. Spoilage was first detected by sensorial analysis using the “needle probing” technique; however, the spoiled sausages were not marketable due to the high ammonia and vinegar smell. The added starter culture did not limit or inhibit the spoilage microorganisms, which were represented by Levilactobacillus brevis, the predominant species, and by Enterococcus faecalis and E. faecium. These microorganisms grew during ripening and produced a large amount of biogenic amines, which could represent a risk for consumers. Furthermore, Lev. brevis, being a heterofermentant, also produced ethanol, acetic acid and a variation in the sausage colour. The production of biogenic amines was confirmed in vitro. Furthermore, as observed in a previous work, a second cause of spoilage can be attributed to moulds that grew during ripening; both the isolated strains, Penicillium nalgiovense, added as starter culture, and P. lanoso-coeruleum, present as environmental contaminant, grew between the meat and casing, producing a large amount of total volatile nitrogen, responsible for the ammonia smell perceived either in the ripening area or in the sausages. This is the first description of Levilactobacillus brevis predominance in spoiled goose sausage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.